CustomKD: Customizing Large Vision Foundation for Edge Model Improvement via Knowledge Distillation
- URL: http://arxiv.org/abs/2503.18244v1
- Date: Sun, 23 Mar 2025 23:53:08 GMT
- Title: CustomKD: Customizing Large Vision Foundation for Edge Model Improvement via Knowledge Distillation
- Authors: Jungsoo Lee, Debasmit Das, Munawar Hayat, Sungha Choi, Kyuwoong Hwang, Fatih Porikli,
- Abstract summary: We propose a knowledge distillation approach, CustomKD, that effectively leverages large vision foundation models (LVFMs) to enhance the performance of edge models.<n>Our simple yet effective CustomKD customizes the well-generalized features inherent in LVFMs to a given student model in order to reduce model discrepancies.
- Score: 57.91828170220308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel knowledge distillation approach, CustomKD, that effectively leverages large vision foundation models (LVFMs) to enhance the performance of edge models (e.g., MobileNetV3). Despite recent advancements in LVFMs, such as DINOv2 and CLIP, their potential in knowledge distillation for enhancing edge models remains underexplored. While knowledge distillation is a promising approach for improving the performance of edge models, the discrepancy in model capacities and heterogeneous architectures between LVFMs and edge models poses a significant challenge. Our observation indicates that although utilizing larger backbones (e.g., ViT-S to ViT-L) in teacher models improves their downstream task performances, the knowledge distillation from the large teacher models fails to bring as much performance gain for student models as for teacher models due to the large model discrepancy. Our simple yet effective CustomKD customizes the well-generalized features inherent in LVFMs to a given student model in order to reduce model discrepancies. Specifically, beyond providing well-generalized original knowledge from teachers, CustomKD aligns the features of teachers to those of students, making it easy for students to understand and overcome the large model discrepancy overall. CustomKD significantly improves the performances of edge models in scenarios with unlabeled data such as unsupervised domain adaptation (e.g., OfficeHome and DomainNet) and semi-supervised learning (e.g., CIFAR-100 with 400 labeled samples and ImageNet with 1% labeled samples), achieving the new state-of-the-art performances.
Related papers
- RADIOv2.5: Improved Baselines for Agglomerative Vision Foundation Models [60.596005921295806]
Agglomerative models have emerged as a powerful approach to training vision foundation models.<n>We identify critical challenges including resolution mode shifts, teacher imbalance, idiosyncratic teacher artifacts, and an excessive number of output tokens.<n>We propose several novel solutions: multi-resolution training, mosaic augmentation, and improved balancing of teacher loss functions.
arXiv Detail & Related papers (2024-12-10T17:06:41Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - CLDA: Collaborative Learning for Enhanced Unsupervised Domain Adaptation [15.97351561456467]
Collaborative Learning is a method that updates the teacher's non-salient parameters using the student model and at the same time enhance the student's performance.
CLDA achieves an improvement of +0.7% mIoU for teacher and +1.4% mIoU for student compared to the baseline model in the GTA to Cityscapes.
arXiv Detail & Related papers (2024-09-04T13:35:15Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - Progressive Distillation Based on Masked Generation Feature Method for Knowledge Graph Completion [29.297959023968165]
This paper proposes a progressive distillation method based on masked generation features for KGC task.
Specifically, we perform pre-distillation on PLM to obtain high-quality teacher models, and compress the PLM network to obtain multi-grade student models.
The experimental results demonstrate that the model in the pre-distillation stage surpasses the existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-19T07:34:36Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.