When is dataset cartography ineffective? Using training dynamics does not improve robustness against Adversarial SQuAD
- URL: http://arxiv.org/abs/2503.18290v1
- Date: Mon, 24 Mar 2025 02:24:18 GMT
- Title: When is dataset cartography ineffective? Using training dynamics does not improve robustness against Adversarial SQuAD
- Authors: Paul K. Mandal,
- Abstract summary: I partition SQuAD into easy-to-learn, ambiguous, and hard-to-learn subsets.<n>I then compare the performance of models trained on these subsets to those trained on randomly selected samples of equal size.<n>Results show that training on cartography-based subsets does not improve generalization to the SQuAD validation set or the AddSent adversarial set.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, I investigate the effectiveness of dataset cartography for extractive question answering on the SQuAD dataset. I begin by analyzing annotation artifacts in SQuAD and evaluate the impact of two adversarial datasets, AddSent and AddOneSent, on an ELECTRA-small model. Using training dynamics, I partition SQuAD into easy-to-learn, ambiguous, and hard-to-learn subsets. I then compare the performance of models trained on these subsets to those trained on randomly selected samples of equal size. Results show that training on cartography-based subsets does not improve generalization to the SQuAD validation set or the AddSent adversarial set. While the hard-to-learn subset yields a slightly higher F1 score on the AddOneSent dataset, the overall gains are limited. These findings suggest that dataset cartography provides little benefit for adversarial robustness in SQuAD-style QA tasks. I conclude by comparing these results to prior findings on SNLI and discuss possible reasons for the observed differences.
Related papers
- Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - Dataset Bias Mitigation in Multiple-Choice Visual Question Answering and
Beyond [93.96982273042296]
Vision-language (VL) understanding tasks evaluate models' comprehension of complex visual scenes through multiple-choice questions.
We have identified two dataset biases that models can exploit as shortcuts to resolve various VL tasks correctly without proper understanding.
We propose Adversarial Data Synthesis (ADS) to generate synthetic training and debiased evaluation data.
We then introduce Intra-sample Counterfactual Training (ICT) to assist models in utilizing the synthesized training data, particularly the counterfactual data, via focusing on intra-sample differentiation.
arXiv Detail & Related papers (2023-10-23T08:09:42Z) - Alleviating the Effect of Data Imbalance on Adversarial Training [26.36714114672729]
We study adversarial training on datasets that obey the long-tailed distribution.
We propose a new adversarial training framework -- Re-balancing Adversarial Training (REAT)
arXiv Detail & Related papers (2023-07-14T07:01:48Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance.
We study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks.
arXiv Detail & Related papers (2021-09-08T10:39:57Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Learning to Perturb Word Embeddings for Out-of-distribution QA [55.103586220757464]
We propose a simple yet effective DA method based on a noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics.
We validate the performance of the QA models trained with our word embedding on a single source dataset, on five different target domains.
Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.
arXiv Detail & Related papers (2021-05-06T14:12:26Z) - Adaptive Name Entity Recognition under Highly Unbalanced Data [5.575448433529451]
We present our experiments on a neural architecture composed of a Conditional Random Field (CRF) layer stacked on top of a Bi-directional LSTM (BI-LSTM) layer for solving NER tasks.
We introduce an add-on classification model to split sentences into two different sets: Weak and Strong classes and then designing a couple of Bi-LSTM-CRF models properly to optimize performance on each set.
arXiv Detail & Related papers (2020-03-10T06:56:52Z) - Unshuffling Data for Improved Generalization [65.57124325257409]
Generalization beyond the training distribution is a core challenge in machine learning.
We show that partitioning the data into well-chosen, non-i.i.d. subsets treated as multiple training environments can guide the learning of models with better out-of-distribution generalization.
arXiv Detail & Related papers (2020-02-27T03:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.