Can Text-to-Video Generation help Video-Language Alignment?
- URL: http://arxiv.org/abs/2503.18507v1
- Date: Mon, 24 Mar 2025 10:02:22 GMT
- Title: Can Text-to-Video Generation help Video-Language Alignment?
- Authors: Luca Zanella, Massimiliano Mancini, Willi Menapace, Sergey Tulyakov, Yiming Wang, Elisa Ricci,
- Abstract summary: Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models.<n>A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video.<n>In this work, we study whether synthetic videos can help to overcome this issue.<n>Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others.
- Score: 53.0276936367765
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
Related papers
- Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - SPOT! Revisiting Video-Language Models for Event Understanding [31.49859545456809]
We introduce SPOT Prober, to benchmark existing video-language models's capacities of distinguishing event-level discrepancies.
We evaluate the existing video-language models with these positive and negative captions and find they fail to distinguish most of the manipulated events.
Based on our findings, we propose to plug in these manipulated event captions as hard negative samples and find them effective in enhancing models for event understanding.
arXiv Detail & Related papers (2023-11-21T18:43:07Z) - VideoCon: Robust Video-Language Alignment via Contrast Captions [80.08882631838914]
Video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions.
Our work identifies a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order.
Our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks.
arXiv Detail & Related papers (2023-11-15T19:51:57Z) - Analyzing Zero-Shot Abilities of Vision-Language Models on Video
Understanding Tasks [6.925770576386087]
We propose a detailed study on the generalization abilities of image-text models when evaluated on video understanding tasks in a zero-shot setting.
Our experiments show that image-text models exhibit impressive performance on video AR, video RT and video MC.
These findings shed a light on the benefits of adapting foundational image-text models to an array of video tasks while avoiding the costly pretraining step.
arXiv Detail & Related papers (2023-10-07T20:57:54Z) - Language Models with Image Descriptors are Strong Few-Shot
Video-Language Learners [167.0346394848718]
We propose VidIL, a few-shot Video-language Learner via Image and Language models.
We use the image-language models to translate the video content into frame captions, object, attribute, and event phrases.
We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content.
arXiv Detail & Related papers (2022-05-22T05:18:27Z) - Show Me What and Tell Me How: Video Synthesis via Multimodal
Conditioning [36.85533835408882]
This work presents a multimodal video generation framework that benefits from text and images provided jointly or separately.
We propose a new video token trained with self-learning and an improved mask-prediction algorithm for sampling video tokens.
Our framework can incorporate various visual modalities, such as segmentation masks, drawings, and partially occluded images.
arXiv Detail & Related papers (2022-03-04T21:09:13Z) - Stochastic Image-to-Video Synthesis using cINNs [22.5739334314885]
A conditional invertible neural network (cINN) can explain videos by independently modelling static and other video characteristics.
Experiments on four diverse video datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-05-10T17:59:09Z) - Strumming to the Beat: Audio-Conditioned Contrastive Video Textures [112.6140796961121]
We introduce a non-parametric approach for infinite video texture synthesis using a representation learned via contrastive learning.
We take inspiration from Video Textures, which showed that plausible new videos could be generated from a single one by stitching its frames together in a novel yet consistent order.
Our model outperforms baselines on human perceptual scores, can handle a diverse range of input videos, and can combine semantic and audio-visual cues in order to synthesize videos that synchronize well with an audio signal.
arXiv Detail & Related papers (2021-04-06T17:24:57Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
We teach machines to understand visuals and natural language by learning the mapping between sentences and noisy video snippets without explicit annotations.
For training and evaluation, we contribute a new dataset ApartmenTour' that contains a large number of online videos and subtitles.
arXiv Detail & Related papers (2020-11-19T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.