Good Keypoints for the Two-View Geometry Estimation Problem
- URL: http://arxiv.org/abs/2503.18767v1
- Date: Mon, 24 Mar 2025 15:15:36 GMT
- Title: Good Keypoints for the Two-View Geometry Estimation Problem
- Authors: Konstantin Pakulev, Alexander Vakhitov, Gonzalo Ferrer,
- Abstract summary: We propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem.<n>The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error.<n>We use the developed model to design a method that detects keypoints that benefit the homography estimation introducing the Bounded NeSS-ST keypoint detector.
- Score: 48.82616806880012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local features are essential to many modern downstream applications. Therefore, it is of interest to determine the properties of local features that contribute to the downstream performance for a better design of feature detectors and descriptors. In our work, we propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem. The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error. This result provides key insights into why maximizing the number of correspondences doesn't always lead to better homography estimation accuracy. We use the developed model to design a method that detects keypoints that benefit the homography estimation introducing the Bounded NeSS-ST (BoNeSS-ST) keypoint detector. The novelty of BoNeSS-ST comes from strong theoretical foundations, a more accurate keypoint scoring due to subpixel refinement and a cost designed for superior robustness to low saliency keypoints. As a result, BoNeSS-ST outperforms prior self-supervised local feature detectors in both planar homography and epipolar geometry estimation problems.
Related papers
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated,
Noisy, and Decimated Point Cloud Data [17.471342278936365]
We propose a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated.
We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation.
We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches.
arXiv Detail & Related papers (2023-08-10T08:10:01Z) - 2D Human Pose Estimation with Explicit Anatomical Keypoints Structure
Constraints [15.124606575017621]
We present a novel 2D human pose estimation method with explicit anatomical keypoints structure constraints.
Our proposed model can be plugged in the most existing bottom-up or top-down human pose estimation methods.
Our methods perform favorably against the most existing bottom-up and top-down human pose estimation methods.
arXiv Detail & Related papers (2022-12-05T11:01:43Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - FFD: Fast Feature Detector [22.51804239092462]
We show that robust and accurate keypoints exist in the specific scale-space domain.
It is proved that setting the scale-space pyramid's smoothness ratio and blurring to 2 and 0.627, respectively, facilitates the detection of reliable keypoints.
arXiv Detail & Related papers (2020-12-01T21:56:35Z) - Graph-PCNN: Two Stage Human Pose Estimation with Graph Pose Refinement [54.29252286561449]
We propose a two-stage graph-based and model-agnostic framework, called Graph-PCNN.
In the first stage, heatmap regression network is applied to obtain a rough localization result, and a set of proposal keypoints, called guided points, are sampled.
In the second stage, for each guided point, different visual feature is extracted by the localization.
The relationship between guided points is explored by the graph pose refinement module to get more accurate localization results.
arXiv Detail & Related papers (2020-07-21T04:59:15Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Bottom-Up Human Pose Estimation by Ranking Heatmap-Guided Adaptive
Keypoint Estimates [76.51095823248104]
We present several schemes that are rarely or unthoroughly studied before for improving keypoint detection and grouping (keypoint regression) performance.
First, we exploit the keypoint heatmaps for pixel-wise keypoint regression instead of separating them for improving keypoint regression.
Second, we adopt a pixel-wise spatial transformer network to learn adaptive representations for handling the scale and orientation variance.
Third, we present a joint shape and heatvalue scoring scheme to promote the estimated poses that are more likely to be true poses.
arXiv Detail & Related papers (2020-06-28T01:14:59Z) - Entropic gradient descent algorithms and wide flat minima [6.485776570966397]
We show analytically that there exist Bayes optimal pointwise estimators which correspond to minimizers belonging to wide flat regions.
We extend the analysis to the deep learning scenario by extensive numerical validations.
An easy to compute flatness measure shows a clear correlation with test accuracy.
arXiv Detail & Related papers (2020-06-14T13:22:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.