Near-optimal Active Reconstruction
- URL: http://arxiv.org/abs/2503.18999v1
- Date: Mon, 24 Mar 2025 09:17:53 GMT
- Title: Near-optimal Active Reconstruction
- Authors: Daniel Yang,
- Abstract summary: We design an algorithm for the Next Best View (NBV) problem in the context of active object reconstruction.<n>We rigorously derive sublinear bounds for the cumulative regret of our algorithm, which guarantees near-optimality.<n>We evaluate the performance of our algorithm empirically within our simulation framework.
- Score: 3.037563407333583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing practical interest in vision-based tasks for autonomous systems, the need for efficient and complex methods becomes increasingly larger. In the rush to develop new methods with the aim to outperform the current state of the art, an analysis of the underlying theory is often neglected and simply replaced with empirical evaluations in simulated or real-world experiments. While such methods might yield favorable performance in practice, they are often less well understood, which prevents them from being applied in safety-critical systems. The goal of this work is to design an algorithm for the Next Best View (NBV) problem in the context of active object reconstruction, for which we can provide qualitative performance guarantees with respect to true optimality. To the best of our knowledge, no previous work in this field addresses such an analysis for their proposed methods. Based on existing work on Gaussian process optimization, we rigorously derive sublinear bounds for the cumulative regret of our algorithm, which guarantees near-optimality. Complementing this, we evaluate the performance of our algorithm empirically within our simulation framework. We further provide additional insights through an extensive study of potential objective functions and analyze the differences to the results of related work.
Related papers
- Explicit and Implicit Graduated Optimization in Deep Neural Networks [0.6906005491572401]
This paper experimentally evaluates the performance of an explicit graduated optimization algorithm with an optimal noise scheduling.<n>In addition, it demonstrates its effectiveness through experiments on image classification tasks with ResNet architectures.
arXiv Detail & Related papers (2024-12-16T07:23:22Z) - Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
We propose a novel constrained multi-objective Bayesian optimization algorithm COMBOO that balances active learning of the level-set defined on multiple unknowns with multi-objective optimization within the feasible region.
We provide both theoretical analysis and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
arXiv Detail & Related papers (2024-11-06T03:38:00Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Stochastic convex optimization for provably efficient apprenticeship
learning [1.0609815608017066]
We consider large-scale Markov decision processes (MDPs) with an unknown cost function.
We employ convex optimization tools to address the problem of imitation learning, which consists of learning a policy from a finite set of expert demonstrations.
arXiv Detail & Related papers (2021-12-31T19:47:57Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
We focus on a simulation-based optimization problem of choosing the best design from the feasible space.
We formulate the sampling process as a policy searching problem and give a solution from the perspective of Reinforcement Learning (RL)
Some experiments are designed to validate the effectiveness of proposed algorithms.
arXiv Detail & Related papers (2021-10-31T09:04:23Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.