How to optimize K-means?
- URL: http://arxiv.org/abs/2503.19324v1
- Date: Tue, 25 Mar 2025 03:37:52 GMT
- Title: How to optimize K-means?
- Authors: Qi Li,
- Abstract summary: Center-based clustering algorithms (e.g., K-means) are popular for clustering tasks, but they usually struggle to achieve high accuracy on complex datasets.<n>We believe the main reason is that traditional center-based clustering algorithms identify only one clustering center in each cluster.<n>We propose a general optimization method called ECAC, and it can optimize different center-based clustering algorithms.
- Score: 8.206124331448931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Center-based clustering algorithms (e.g., K-means) are popular for clustering tasks, but they usually struggle to achieve high accuracy on complex datasets. We believe the main reason is that traditional center-based clustering algorithms identify only one clustering center in each cluster. Once the distribution of the dataset is complex, a single clustering center cannot strongly represent distant objects within the cluster. How to optimize the existing center-based clustering algorithms will be valuable research. In this paper, we propose a general optimization method called ECAC, and it can optimize different center-based clustering algorithms. ECAC is independent of the clustering principle and is embedded as a component between the center process and the category assignment process of center-based clustering algorithms. Specifically, ECAC identifies several extended-centers for each clustering center. The extended-centers will act as relays to expand the representative capability of the clustering center in the complex cluster, thus improving the accuracy of center-based clustering algorithms. We conducted numerous experiments to verify the robustness and effectiveness of ECAC. ECAC is robust to diverse datasets and diverse clustering centers. After ECAC optimization, the accuracy (NMI as well as RI) of center-based clustering algorithms improves by an average of 33.4% and 64.1%, respectively, and even K-means accurately identifies complex-shaped clusters.
Related papers
- Fast Clustering of Categorical Big Data [1.8416014644193066]
The K-Modes algorithm, developed for clustering categorical data, suffers from unreliable performances in clustering quality and clustering efficiency.<n>We investigate Bisecting K-Modes (BK-Modes), a successive bisecting process to find clusters, in examining how good the cluster centers out of the bisecting process will be.<n> Experimental results indicated good performances of BK-Modes both in the clustering quality and efficiency for large datasets.
arXiv Detail & Related papers (2025-02-10T22:19:08Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
We propose a novel approach to improve initial cluster selection for K-means algorithm.
The Convex Hull algorithm facilitates the computing of the first two centroids and the remaining ones are selected according to the distance from previously selected centers.
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data respectively.
arXiv Detail & Related papers (2022-10-18T00:58:50Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.