Improved Alignment of Modalities in Large Vision Language Models
- URL: http://arxiv.org/abs/2503.19508v1
- Date: Tue, 25 Mar 2025 09:59:46 GMT
- Title: Improved Alignment of Modalities in Large Vision Language Models
- Authors: Kartik Jangra, Aman Kumar Singh, Yashwani Mann, Geetanjali Rathee,
- Abstract summary: We propose a training strategy of auto-regressive vision-language models.<n>We propose four training stages for aligning the vision model with the language model.<n>We also devise different attention masks for training transformer-based language models.
- Score: 1.4561960744147884
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in vision-language models have achieved remarkable results in making language models understand vision inputs. However, a unified approach to align these models across diverse tasks such as image captioning and visual question answering remains a challenge. Existing methods either require very big language models or very big datasets which is not efficient in utilizing existing models. This paper addresses this gap and devises a training strategy of auto-regressive vision-language models, to unify vision-language tasks like image-captioning and visual question answering. We propose four training stages for aligning the vision model with the language model, in other words, the language model is given an ability to process visual inputs. We also devise different attention masks for training transformer-based language models that improve the quality of visual features. Further, we introduce some findings, 1) the attention mask should not be applied on visual inputs, 2) the Language model converges faster on AI- generated data, 3) More work should be done in the alignment stage during the pre-training of the model, 4) the model can easily adapt to any downstream tasks like visual question answering on healthcare datasets like PathVQA. After training the model for one epoch for all the stages, it outperforms large models like VILA-13 billion models on common benchmarks like CIDEr scores on COCO and Flickr30k datasets and achieves very close scores to GIT-2 on the same dataset despite being a much smaller model trained on a much smaller dataset. All of the training is done using best practices available like multi- GPU parallel training, lower-precision training with 16-bit float numbers, faster attention (SDPA), and gradient accumulation, and completed the training within 12 hours.
Related papers
- A Chain-of-Thought Subspace Meta-Learning for Few-shot Image Captioning with Large Vision and Language Models [17.144311122664508]
A large-scale vision and language model that has been pretrained on massive data encodes visual and linguistic prior.
We propose a chain-of-thought (CoT) meta-learning scheme as a multi-step image captioning procedure to better imitate how humans describe images.
arXiv Detail & Related papers (2025-02-19T18:35:43Z) - MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding [6.538592344967826]
We introduce MUSE-VL, a Unified Vision-Language Model Semantic through discrete semantic.<n>Our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%.
arXiv Detail & Related papers (2024-11-26T03:33:52Z) - Enhancing Visual Grounding and Generalization: A Multi-Task Cycle Training Approach for Vision-Language Models [41.64717254672843]
Visual grounding occupies a pivotal position in multi-modality vision-language models.
We propose ViLaM, a large multi-modality model, that supports multi-tasks of VG.
ViLaM extends a wide range of instructions, thereby significantly enhancing its generalization and interaction potentials.
arXiv Detail & Related papers (2023-11-21T03:40:09Z) - MiniGPT-v2: large language model as a unified interface for
vision-language multi-task learning [65.60607895153692]
MiniGPT-v2 is a model that can be treated as a unified interface for better handling various vision-language tasks.
We propose using unique identifiers for different tasks when training the model.
Our results show that MiniGPT-v2 achieves strong performance on many visual question-answering and visual grounding benchmarks.
arXiv Detail & Related papers (2023-10-14T03:22:07Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
We propose a recipe for image-language learning, which produces effective models, outperforming bigger and more expensive ones, often trained on orders of magnitude larger datasets.
Our key finding is the joint learning of a compact vision and language representation, which adaptively and iteratively fuses the multi-modal features.
With only 40M training examples and with 39 GFLOPs our lightweight model outperforms many times larger state-of-the-art models of 2-20x more FLOPs and using bigger datasets some of which with close to 1B training examples.
arXiv Detail & Related papers (2023-05-31T15:02:02Z) - Making the Most of What You Have: Adapting Pre-trained Visual Language
Models in the Low-data Regime [23.255873641249263]
We look into task adaptation in the low-data regime, and provide a study of the existing adaptation methods for generative Visual Language Models.
We show important benefits of self-labelling, i.e. using the model's own predictions to self-improve when having access to a larger number of unlabelled images.
arXiv Detail & Related papers (2023-05-03T17:42:54Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
Contrastive vision-language models (e.g. CLIP) are created by updating all the parameters of a vision model and language model through contrastive training.
We show that a minimal set of parameter updates ($$7%) can achieve the same performance as full-model training.
We describe a series of experiments: we show that existing knowledge is conserved more strongly in parameter-efficient training.
arXiv Detail & Related papers (2023-03-21T14:12:08Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Effective End-to-End Vision Language Pretraining with Semantic Visual
Loss [58.642954383282216]
Current vision language pretraining models are dominated by methods using region visual features extracted from object detectors.
We introduce three types of visual losses that enable much faster convergence and better finetuning accuracy.
Compared with region feature models, our end-to-end models could achieve similar or better performance on downstream tasks and run more than 10 times faster during inference.
arXiv Detail & Related papers (2023-01-18T00:22:49Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.