Towards Reliable Time Series Forecasting under Future Uncertainty: Ambiguity and Novelty Rejection Mechanisms
- URL: http://arxiv.org/abs/2503.19656v1
- Date: Tue, 25 Mar 2025 13:44:29 GMT
- Title: Towards Reliable Time Series Forecasting under Future Uncertainty: Ambiguity and Novelty Rejection Mechanisms
- Authors: Ninghui Feng, Songning Lai, Xin Zhou, Jiayu Yang, Kunlong Feng, Zhenxiao Yin, Fobao Zhou, Zhangyi Hu, Yutao Yue, Yuxuan Liang, Boyu Wang, Hang Zhao,
- Abstract summary: We introduce a dual rejection mechanism combining ambiguity and novelty rejection.<n>Ambiguity rejection allows the model to abstain under low confidence, assessed through historical error variance analysis.<n>Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data.
- Score: 36.83718113051274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world time series forecasting, uncertainty and lack of reliable evaluation pose significant challenges. Notably, forecasting errors often arise from underfitting in-distribution data and failing to handle out-of-distribution inputs. To enhance model reliability, we introduce a dual rejection mechanism combining ambiguity and novelty rejection. Ambiguity rejection, using prediction error variance, allows the model to abstain under low confidence, assessed through historical error variance analysis without future ground truth. Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data. This dual approach improves forecasting reliability in dynamic environments by reducing errors and adapting to data changes, advancing reliability in complex scenarios.
Related papers
- TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
We propose a simple failure detection framework to unify and facilitate classification with rejection under both covariate and semantic shifts.
Our key insight is that by separating and consolidating failure-specific reliability knowledge with low-rank adapters, we can enhance the failure detection ability effectively and flexibly.
arXiv Detail & Related papers (2025-04-20T09:20:55Z) - ConfEviSurrogate: A Conformalized Evidential Surrogate Model for Uncertainty Quantification [19.44456342675541]
Surrogate models, crucial for approximating complex simulation data across sciences, inherently carry uncertainties that range from simulation noise to model prediction errors.
We introduce ConfEviSurrogate, a novel Conformalized Evidential Surrogate Model that can efficiently learn high-order evidential distributions.
Our model demonstrates accurate predictions and robust uncertainty estimates in diverse simulations, including cosmology, ocean dynamics, and fluid dynamics.
arXiv Detail & Related papers (2025-04-03T15:44:14Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
In a well-calibrated model, uncertainty estimates should perfectly correlate with model error.
We propose a novel error aligned uncertainty optimization method and introduce a trainable loss function to guide the models to yield good quality uncertainty estimates aligning with the model error.
We demonstrate that our method improves average displacement error by 1.69% and 4.69%, and the uncertainty correlation with model error by 17.22% and 19.13% as quantified by Pearson correlation coefficient on two state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-09T12:33:26Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.