Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better
- URL: http://arxiv.org/abs/2503.19904v1
- Date: Tue, 25 Mar 2025 17:58:48 GMT
- Title: Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better
- Authors: Zihang Lai, Andrea Vedaldi,
- Abstract summary: Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts.<n>Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion.<n>We propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks.
- Score: 61.381599921020175
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts. Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion and may not capture long-range temporal dependencies in dynamic scenes. To address this gap, we propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks, i.e., sequences of corresponding points across frames. By incorporating these motion cues, the Tracktention Layer enhances temporal alignment and effectively handles complex object motions, maintaining consistent feature representations over time. Our approach is computationally efficient and can be seamlessly integrated into existing models, such as Vision Transformers, with minimal modification. It can be used to upgrade image-only models to state-of-the-art video ones, sometimes outperforming models natively designed for video prediction. We demonstrate this on video depth prediction and video colorization, where models augmented with the Tracktention Layer exhibit significantly improved temporal consistency compared to baselines.
Related papers
- STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding [48.12128042470839]
We propose an integrated Spatial-TempOral dynamic Prompting (STOP) model.<n>It consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting.<n>STOP consistently achieves superior performance against state-of-the-art methods.
arXiv Detail & Related papers (2025-03-20T09:16:20Z) - Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.
Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss [35.69606926024434]
We propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss.<n>We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video.<n>This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup.
arXiv Detail & Related papers (2025-01-13T18:53:08Z) - Trajectory Attention for Fine-grained Video Motion Control [20.998809534747767]
This paper introduces trajectory attention, a novel approach that performs attention along available pixel trajectories for fine-grained camera motion control.<n>We show that our approach can be extended to other video motion control tasks, such as first-frame-guided video editing.
arXiv Detail & Related papers (2024-11-28T18:59:51Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
Given an untrimmed video, temporal sentence grounding aims to locate a target moment semantically according to a sentence query.
Previous respectable works have made decent success, but they only focus on high-level visual features extracted from decoded frames.
We propose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input.
arXiv Detail & Related papers (2023-03-14T12:53:27Z) - ProContEXT: Exploring Progressive Context Transformer for Tracking [20.35886416084831]
Existing Visual Object Tracking (VOT) only takes the target area in the first frame as a template.
This causes tracking to inevitably fail in fast-changing and crowded scenes, as it cannot account for changes in object appearance between frames.
We revamped the framework with Progressive Context.
Transformer Tracker (ProContEXT), which coherently exploits spatial and temporal contexts to predict object motion trajectories.
arXiv Detail & Related papers (2022-10-27T14:47:19Z) - Time Is MattEr: Temporal Self-supervision for Video Transformers [72.42240984211283]
We design simple yet effective self-supervised tasks for video models to learn temporal dynamics better.
Our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs.
Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.
arXiv Detail & Related papers (2022-07-19T04:44:08Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.