Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
- URL: http://arxiv.org/abs/2503.19945v1
- Date: Tue, 25 Mar 2025 11:51:21 GMT
- Title: Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
- Authors: Daniel G. P. Petrini, Hae Yong Kim,
- Abstract summary: This study explores open questions in the application of machine learning for breast cancer detection in mammograms.<n>We develop models that outperform previous results for both single-view and two-view classifiers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores open questions in the application of machine learning for breast cancer detection in mammograms. Current approaches often employ a two-stage transfer learning process: first, adapting a backbone model trained on natural images to develop a patch classifier, which is then used to create a single-view whole-image classifier. Additionally, many studies leverage both mammographic views to enhance model performance. In this work, we systematically investigate five key questions: (1) Is the intermediate patch classifier essential for optimal performance? (2) Do backbone models that excel in natural image classification consistently outperform others on mammograms? (3) When reducing mammogram resolution for GPU processing, does the learn-to-resize technique outperform conventional methods? (4) Does incorporating both mammographic views in a two-view classifier significantly improve detection accuracy? (5) How do these findings vary when analyzing low-quality versus high-quality mammograms? By addressing these questions, we developed models that outperform previous results for both single-view and two-view classifiers. Our findings provide insights into model architecture and transfer learning strategies contributing to more accurate and efficient mammogram analysis.
Related papers
- Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.<n>Our framework introduces two key components into the common MIL model architecture.<n>We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - Towards Robust Natural-Looking Mammography Lesion Synthesis on
Ipsilateral Dual-Views Breast Cancer Analysis [1.1098503592431275]
Two major issues of mammogram classification tasks are leveraging multi-view mammographic information and class-imbalance handling.
We propose a simple but novel method for enhancing examined view (main view) by leveraging low-level feature information from the auxiliary view.
We also propose a simple but novel malignant mammogram synthesis framework for up synthesizing minor class samples.
arXiv Detail & Related papers (2023-09-07T06:33:30Z) - M&M: Tackling False Positives in Mammography with a Multi-view and
Multi-instance Learning Sparse Detector [13.67324365495568]
Deep-learning-based object detection methods show promise for improving screening mammography, but high rates of false positives can hinder their effectiveness in clinical practice.
We identify three challenges: unlike natural images, a malignant mammogram typically contains only one malignant finding; mammography exams contain two views of each breast, and both views ought to be considered to make a correct assessment.
We tackle the three aforementioned challenges by: (1) leveraging Sparse R-CNN and showing that sparse detectors are more appropriate than dense detectors for mammography; (2) including a multi-view cross-attention module to synthesize information from different views; and (3) incorporating multi-instance
arXiv Detail & Related papers (2023-08-11T23:59:47Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Mammograms Classification: A Review [0.0]
Mammogram images have been utilized in developing computer-aided diagnosis systems.
Researchers have proved that artificial intelligence with its emerging technologies can be used in the early detection of the disease.
arXiv Detail & Related papers (2022-03-04T19:22:35Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Using Machine Learning to Automate Mammogram Images Analysis [12.19801103274363]
Early detection of breast cancer in X-ray mammography is believed to have effectively reduced the mortality rate.
A computer-aided automatic mammogram analysis system is proposed to process the mammogram images and automatically discriminate them as either normal or cancerous.
arXiv Detail & Related papers (2020-12-06T00:10:18Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.