Consistency Trajectory Matching for One-Step Generative Super-Resolution
- URL: http://arxiv.org/abs/2503.20349v2
- Date: Thu, 27 Mar 2025 13:59:15 GMT
- Title: Consistency Trajectory Matching for One-Step Generative Super-Resolution
- Authors: Weiyi You, Mingyang Zhang, Leheng Zhang, Xingyu Zhou, Kexuan Shi, Shuhang Gu,
- Abstract summary: Current diffusion-based super-resolution approaches achieve commendable performance at the cost of high inference overhead.<n>We propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step.<n>We show that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets.
- Score: 19.08324232157866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
Related papers
- CTSR: Controllable Fidelity-Realness Trade-off Distillation for Real-World Image Super Resolution [52.93785843453579]
Real-world image super-resolution is a critical image processing task, where two key evaluation criteria are the fidelity to the original image and the visual realness of the generated results.<n>We propose a distillation-based approach that leverages the geometric decomposition of both fidelity and realness, alongside the performance advantages of multiple teacher models.<n> Experiments conducted on several real-world image super-resolution benchmarks demonstrate that our method surpasses existing state-of-the-art approaches.
arXiv Detail & Related papers (2025-03-18T14:06:39Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.
First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.
Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution [25.994093587158808]
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) tasks.<n>Given the iterative refinement nature of diffusion models, most existing approaches are computationally expensive.<n>We propose TSD-SR, a novel distillation framework specifically designed for real-world image super-resolution.
arXiv Detail & Related papers (2024-11-27T12:01:08Z) - Co-learning Single-Step Diffusion Upsampler and Downsampler with Two Discriminators and Distillation [28.174638880324014]
Super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.<n>We propose a co-learning framework that jointly optimize a single-step diffusion-based upsampler and a learnable downsampler.
arXiv Detail & Related papers (2024-10-10T07:12:46Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.