Hybrid interfaces at the single quantum level in fluorescent molecules
- URL: http://arxiv.org/abs/2503.20872v3
- Date: Wed, 23 Apr 2025 18:00:04 GMT
- Title: Hybrid interfaces at the single quantum level in fluorescent molecules
- Authors: Daniele De Bernardis, Hugo Levy-Falk, Elena Fanella, Rocco Duquennoy, Valerio Digiorgio, Giacomo Scalari, Maja Colautti, Costanza Toninelli,
- Abstract summary: Multiple external laser sources exert control of the vibronic states of a single fluorescent molecule.<n>The steady state exhibits vibrational bi-modality resulting in a statistical mixture of non-classical vibronic cat states.<n>This work assesses the role of molecules as an optomechanical quantum toolbox for creating hybrid entangled states of electrons, photons, and vibrations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically investigate a single fluorescent molecule as a hybrid quantum optical device, in which multiple external laser sources exert control of the vibronic states. In the high-saturation regime, a coherent interaction is established between the vibrational and electronic degrees of freedom, and molecules can simulate several cavity QED models, whereby a specific vibrational mode plays the role of the cavity mode. Focusing on the specific example where the system is turned into an analogue simulator of the quantum Rabi model, the steady state exhibits vibrational bi-modality resulting in a statistical mixture of highly non-classical vibronic cat states. Applying our paradigm to molecules with prominent spatial asymmetry and combining an optical excitation with a THz(IR) driving, the system can be turned into a single photon transducer. Two possible implementations are discussed based on the coupling to a subwavelength THz patch antenna or a resonant metamaterial. In a nutshell, this work assesses the role of molecules as an optomechanical quantum toolbox for creating hybrid entangled states of electrons, photons, and vibrations, hence enabling frequency conversion over very different energy scales.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Mode-multiplexing deep-strong light-matter coupling [0.0]
We show a new regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes.
The extreme interaction drives strongly subcycle exchange of vacuum energy between multiple bosonic modes.
This offers avenues towards tailoring phase transitions by coupling otherwise non-interacting modes.
arXiv Detail & Related papers (2023-09-13T12:27:35Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Low-energy Free-electron Rabi oscillation and its applications [2.2100616953391468]
We propose free-electron Rabi oscillation by creating an isolated two-level system in a synthetic energy space induced by laser.
The pi/2-pulse and pi-pulse in synthetic Rabi dynamics can function as 'beam splitters' and'mirrors' for free-electron interferometry.
arXiv Detail & Related papers (2023-04-24T15:33:53Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - A versatile quantum simulator for coupled oscillators using a 1D chain
of atoms trapped near an optical nanofiber [0.0]
transversely confined propagating light modes of a nano-photonic optical waveguide or nanofiber can mediate effectively infinite-range forces.
We show that for a linear chain of particles trapped within the waveguide's evanescent field, transverse illumination with a suitable set of laser frequencies should allow the implementation of a coupled-oscillator quantum simulator.
arXiv Detail & Related papers (2021-05-07T13:42:01Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.