Collective emission and selective-radiance in atomic clouds and arrays coupled to a microring resonator
- URL: http://arxiv.org/abs/2503.21121v1
- Date: Thu, 27 Mar 2025 03:20:47 GMT
- Title: Collective emission and selective-radiance in atomic clouds and arrays coupled to a microring resonator
- Authors: Deepak A. Suresh, Xinchao Zhou, Chen-Lung Hung, F. Robicheaux,
- Abstract summary: atoms can interact with each other through light-induced dipole-dipole interactions mediated by free space and through the resonator whispering-gallery modes.<n>The differing characteristics and mismatched wavenumbers of these modes give rise to complex dynamics and provide new opportunities for controlling light-matter interactions.<n>We explore these phenomena in the context of an experimentally realized atom cloud and study the potential of the proposed sub-wavelength atom arrays.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically investigate the collective dipole-dipole interactions in atoms coupled to a nanophotonic microring resonator. The atoms can interact with each other through light-induced dipole-dipole interactions mediated by free space and through the resonator whispering-gallery modes. The differing characteristics and mismatched wavenumbers of these modes give rise to complex dynamics and provide new opportunities for controlling light-matter interactions. We explore these phenomena in the context of an experimentally realized atom cloud and study the potential of the proposed sub-wavelength atom arrays.
Related papers
- Selective collective emission from a dense atomic ensemble coupled to a nanophotonic resonator [0.0]
We experimentally and theoretically study collective emission of a dense atomic ensemble coupled to a whispering-gallery-mode (WGM) in a nanophotonic microring resonator.<n>By tuning the atom-WGM coupling and by adjusting the number of trapped atoms, we demonstrate superradiant emission to the WGM.<n>For photon emission via the non-guided modes, our study reveals signatures of subradiance and superradiance when the system is driven to the steady-state states.
arXiv Detail & Related papers (2025-03-07T18:25:04Z) - Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Collectively enhanced ground-state cooling in subwavelength atomic arrays [0.0]
We present a sideband cooling scheme for atoms trapped in subwavelength arrays.
We derive an effective master equation for the atomic motion by adiabatically eliminating the internal degrees of freedom of the atoms.
This approach could be utilized for future quantum technologies based on dense ensembles of emitters.
arXiv Detail & Related papers (2024-05-28T18:00:05Z) - Excitation spectrum of a multilevel atom coupled with a dielectric
nanostructure [0.0]
We calculate the excitation spectrum of a single-electron atom localized near a dielectric nanostructure.
In particular, the strong resonance interaction between atom(s) and light, propagating through a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array consisting of a few atoms.
As a potential implication, the directional one-dimensional resonance scattering, expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum register.
arXiv Detail & Related papers (2023-12-14T21:17:12Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Continuous wave quantum light control via engineered Rydberg induced
dephasing [17.857341127079305]
We analyze several variations of a single-photon optical switch operating in the continuous wave regime.
The devices are based on ensembles of Rydberg atoms that interact through van der Waals interaction.
arXiv Detail & Related papers (2023-09-19T18:39:24Z) - Multimode Ultrastrong Coupling in Three-Dimensional Photonic-Crystal Cavities [36.212701687134064]
One-dimensional photonic-crystal cavities have uniform spatial profiles in the lateral plane.
Fabrication challenges have hindered the achievement of strong coupling in 3D-PCCs.
We report the realization of multimode ultrastrong coupling in a 3D-PCC at terahertz frequencies.
arXiv Detail & Related papers (2023-08-23T21:14:01Z) - Dipole-dipole Interactions Through a Lens [0.0]
We study the fluctuation-mediated interactions between two atoms in the presence of an aplanatic lens.
We derive the field propagation of the linear optical system in terms of the electromagnetic Green's tensor for an aplanatic lens.
arXiv Detail & Related papers (2022-04-01T17:47:42Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Controlling interactions between quantum emitters using atom arrays [0.0]
We investigate two-dimensional atomic arrays as a platform to modify the electromagnetic environment of individual quantum emitters.
We demonstrate that control over emission linewidths, resonant frequency shifts, and local enhancement of driving fields is possible due to strong dipole-dipole interactions within ordered, subwavelength atom configurations.
arXiv Detail & Related papers (2020-05-05T23:11:43Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.