Value of risk-contact data from digital contact monitoring apps in infectious disease modeling
- URL: http://arxiv.org/abs/2503.21228v1
- Date: Thu, 27 Mar 2025 07:40:57 GMT
- Title: Value of risk-contact data from digital contact monitoring apps in infectious disease modeling
- Authors: Martijn H. H. Schoot Uiterkamp, Willian J. van Dijk, Hans Heesterbeek, Remco van der Hofstad, Jessica C. Kiefte-de Jong, Nelly Litvak,
- Abstract summary: We present a simple method to integrate risk-contact data, obtained via digital contact monitoring (DCM) apps, in conventional compartmental transmission models.<n>We apply our method to the recent COVID-19 epidemic in the Netherlands, using self-reported data from the health surveillance app COVID RADAR and proximity-based data from the contact tracing app CoronaMelder.
- Score: 1.53934570513443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a simple method to integrate risk-contact data, obtained via digital contact monitoring (DCM) apps, in conventional compartmental transmission models. During the recent COVID-19 pandemic, many such data have been collected for the first time via newly developed DCM apps. However, it is unclear what the added value of these data is, unlike that of traditionally collected data via, e.g., surveys during non-epidemic times. The core idea behind our method is to express the number of infectious individuals as a function of the proportion of contacts that were with infected individuals and use this number as a starting point to initialize the remaining compartments of the model. As an important consequence, using our method, we can estimate key indicators such as the effective reproduction number using only two types of daily aggregated contact information, namely the average number of contacts and the average number of those contacts that were with an infected individual. We apply our method to the recent COVID-19 epidemic in the Netherlands, using self-reported data from the health surveillance app COVID RADAR and proximity-based data from the contact tracing app CoronaMelder. For both data sources, our corresponding estimates of the effective reproduction number agree both in time and magnitude with estimates based on other more detailed data sources such as daily numbers of cases and hospitalizations. This suggests that the use of DCM data in transmission models, regardless of the precise data type and for example via our method, offers a promising alternative for estimating the state of an epidemic, especially when more detailed data are not available.
Related papers
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
We introduce a new method for combining semi-supervised with multiple-instance learning.
We show that by leveraging the unlabelled data of 454 subjects we can achieve large performance gains in per-subject tremor detection.
arXiv Detail & Related papers (2023-04-29T12:25:10Z) - Models for digitally contact-traced epidemics [0.0]
Digital contact tracing has been proposed as an automated solution to scale up traditional contact tracing.
We propose a compartmental SEIR model to derive closed-form conditions regarding the control of the COVID-19 epidemic.
arXiv Detail & Related papers (2022-03-01T16:50:00Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - TsFeX: Contact Tracing Model using Time Series Feature Extraction and
Gradient Boosting [0.0]
This research presents an automated machine learning system for identifying individuals who may have come in contact with others infected with COVID-19.
This paper describes the different approaches followed in arriving at an optimal solution model that effectually predicts whether a person has been in close proximity to an infected individual.
arXiv Detail & Related papers (2021-11-29T11:12:38Z) - Epidemic Management and Control Through Risk-Dependent Individual
Contact Interventions [1.1439420412899566]
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale.
Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network.
arXiv Detail & Related papers (2021-09-22T18:39:10Z) - Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing
Imputation Perspective [5.64530854079352]
We address imputation of missing data by modeling the joint distribution of multi-modal data.
Motivated by partial bidirectional generative adversarial net (PBiGAN), we propose a new Conditional PBiGAN (C-PBiGAN) method.
C-PBiGAN achieves significant improvements in lung cancer risk estimation compared with representative imputation methods.
arXiv Detail & Related papers (2021-07-25T20:15:16Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs)
We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model.
arXiv Detail & Related papers (2021-03-12T10:59:26Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - Predicting Infectiousness for Proactive Contact Tracing [75.62186539860787]
Large-scale digital contact tracing is a potential solution to resume economic and social activity while minimizing spread of the virus.
Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health.
This paper develops and test methods that can be deployed to a smartphone to proactively predict an individual's infectiousness.
arXiv Detail & Related papers (2020-10-23T17:06:07Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.