OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
- URL: http://arxiv.org/abs/2503.21257v1
- Date: Thu, 27 Mar 2025 08:28:22 GMT
- Title: OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
- Authors: Yongxu Wang, Weiyun Yi, Xinhao Kong, Wanting Li,
- Abstract summary: This paper proposes an imitation learning algorithm tailored for humanoid robots.<n>By focusing on the primary task objectives, the proposed algorithm suppresses environmental disturbances.<n> Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios.
- Score: 1.4719692998274154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
Related papers
- Towards Conscious Service Robots [21.66931637743555]
Real-world robotics face challenges like variability, high-dimensional state spaces, non-linear dependencies, and partial observability.<n>Unlike current machine learning models, humans adapt quickly to changes and new tasks due to a cognitive architecture that enables systematic generalization and meta-cognition.<n>Next generation of service robots will handle novel situations and monitor themselves to avoid risks and mitigate errors.
arXiv Detail & Related papers (2025-01-25T12:32:52Z) - Human-Humanoid Robots Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning from Demonstration [9.42179962375058]
We propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype.<n>The model learns behavior primitives from human demonstrations through adversarial imitation, and complex robot structures are decomposed into functional components.<n>Our framework is validated on five humanoid robots with diverse configurations.
arXiv Detail & Related papers (2024-12-19T18:41:45Z) - Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation [16.809190349155525]
We propose a novel adaptation paradigm that leverages readily available paired human-robot video data to bridge the domain gap.
Our method employs a human-robot contrastive alignment loss to align the semantics of human and robot videos, adapting pre-trained models to the robot domain in a parameter-efficient manner.
arXiv Detail & Related papers (2024-06-20T11:57:46Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.