Quantum umlaut information
- URL: http://arxiv.org/abs/2503.21479v1
- Date: Thu, 27 Mar 2025 13:11:49 GMT
- Title: Quantum umlaut information
- Authors: Filippo Girardi, Aadil Oufkir, Bartosz Regula, Marco Tomamichel, Mario Berta, Ludovico Lami,
- Abstract summary: We study the quantum umlaut information, a correlation measure defined for bipartite quantum states $rho_AB$.<n>Inspired by recent results in entanglement theory, we show that the regularised umlaut information constitutes a fundamental measure of the quality of classical information transmission over a quantum channel.
- Score: 13.579228184578723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum umlaut information, a correlation measure defined for bipartite quantum states $\rho_{AB}$ as a reversed variant of the quantum mutual information: $U(A;B)_\rho = \min_{\sigma_B} D(\rho_A\otimes \sigma_B\|\rho_{AB})$ in terms of the quantum relative entropy $D$. As in the classical case [Girardi et al., arXiv:2503.18910], this definition allows for a closed-form expression and has an operational interpretation as the asymptotic error exponent in the hypothesis testing task of deciding whether a given bipartite state is product or not. We generalise the umlaut information to quantum channels, where it also extends the notion of `oveloh information' [Nuradha et al., arXiv:2404.16101]. We prove that channel umlaut information is additive for classical-quantum channels, while we observe additivity violations for fully quantum channels. Inspired by recent results in entanglement theory, we then show as our main result that the regularised umlaut information constitutes a fundamental measure of the quality of classical information transmission over a quantum channel -- as opposed to the capacity, which quantifies the quantity of information that can be sent. This interpretation applies to coding assisted by activated non-signalling correlations, and the channel umlaut information is in general larger than the corresponding expression for unassisted communication as obtained by Dalai for the classical-quantum case [IEEE Trans. Inf. Theory 59, 8027 (2013)]. Combined with prior works on non-signalling--assisted zero-error channel capacities, our findings imply a dichotomy between the settings of zero-rate error exponents and zero-error communication. While our results are single-letter only for classical-quantum channels, we also give a single-letter bound for fully quantum channels in terms of the `geometric' version of umlaut information.
Related papers
- Improved bounds on quantum uncommon information [2.812395851874055]
In quantum information theory, quantum uncommon information is the minimal amount of entanglement required for the quantum communication task of quantum state exchange.
We develop a subspace exchange strategy that leverages a common subspace of two parties to identify the unnecessary qubits for exchange.
Our bounds provide more precise estimations for the quantum uncommon information.
arXiv Detail & Related papers (2024-06-21T06:02:41Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Correlation measures of a quantum state and information characteristics
of a quantum channel [0.0]
We discuss the interconnections between basic correlation measures of a bipartite quantum state and basic information characteristics of a quantum channel.
We describe properties of the (unoptimized and optimized) quantum discord in infinite bipartite systems.
arXiv Detail & Related papers (2023-04-11T17:58:13Z) - Sufficient statistic and recoverability via Quantum Fisher Information
metrics [12.968826862123922]
We prove that for a large class of quantum Fisher information, a quantum channel is sufficient for a family of quantum states.
We obtain an approximate recovery result in the sense that, if the quantum $chi2$ divergence is approximately preserved by a quantum channel, two states can be recovered.
arXiv Detail & Related papers (2023-02-05T09:02:36Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - A Theoretical Framework for Learning from Quantum Data [15.828697880068704]
We propose a theoretical foundation for learning classical patterns from quantum data.
We present a quantum counterpart of the well-known PAC framework.
We establish upper bounds on the quantum sample complexity quantum concept classes.
arXiv Detail & Related papers (2021-07-13T21:39:47Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Channel State Masking [78.7611537027573]
Communication over a quantum channel that depends on a quantum state is considered when the encoder has channel side information (CSI) and is required to mask information on the quantum channel state from the decoder.
A full characterization is established for the entanglement-assisted masking equivocation region, and a regularized formula is given for the quantum capacity-leakage function without assistance.
arXiv Detail & Related papers (2020-06-10T16:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.