A Local Perspective-based Model for Overlapping Community Detection
- URL: http://arxiv.org/abs/2503.21558v1
- Date: Thu, 27 Mar 2025 14:43:42 GMT
- Title: A Local Perspective-based Model for Overlapping Community Detection
- Authors: Gaofeng Zhou, Rui-Feng Wang, Kangning Cui,
- Abstract summary: We propose LQ-GCN, an overlapping community detection model from a local community perspective.<n>LQ-GCN employs a Bernoulli-Poisson model to construct a community affiliation matrix and form an end-to-end detection framework.<n>LQ-GCN achieves up to a 33% improvement in Normalized Mutual Information (NMI) and a 26.3% improvement in Recall compared to baseline models.
- Score: 0.06206748337438322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection, which identifies densely connected node clusters with sparse between-group links, is vital for analyzing network structure and function in real-world systems. Most existing community detection methods based on GCNs primarily focus on node-level information while overlooking community-level features, leading to performance limitations on large-scale networks. To address this issue, we propose LQ-GCN, an overlapping community detection model from a local community perspective. LQ-GCN employs a Bernoulli-Poisson model to construct a community affiliation matrix and form an end-to-end detection framework. By adopting local modularity as the objective function, the model incorporates local community information to enhance the quality and accuracy of clustering results. Additionally, the conventional GCNs architecture is optimized to improve the model capability in identifying overlapping communities in large-scale networks. Experimental results demonstrate that LQ-GCN achieves up to a 33% improvement in Normalized Mutual Information (NMI) and a 26.3% improvement in Recall compared to baseline models across multiple real-world benchmark datasets.
Related papers
- A stochastic block model for community detection in attributed networks [7.128313939076842]
Existing community detection methods mostly focus on network structure, while the methods of integrating node attributes is mainly for the traditional community structures.
A block model that integrates betweenness centrality and clustering coefficient of nodes for community detection in attributed networks is proposed in this paper.
The performance of this model is superior to other five compared algorithms.
arXiv Detail & Related papers (2023-08-31T01:00:24Z) - GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector [156.43671738038657]
We present a novel end-to-end group collaborative learning network, termed GCoNet+.
GCoNet+ can effectively and efficiently identify co-salient objects in natural scenes.
arXiv Detail & Related papers (2022-05-30T23:49:19Z) - High-order Order Proximity-Incorporated, Symmetry and Graph-Regularized
Nonnegative Matrix Factorization for Community Detection [6.573829734173933]
High-Order Proximity (HOP)-incorporated, Symmetry and Graph-regularized NMF (HSGN) model proposed.
HSGN-based community detector significantly outperforms both benchmark and state-of-the-art community detectors in providing highly-accurate community detection results.
arXiv Detail & Related papers (2022-03-08T06:45:31Z) - Bayesian community detection for networks with covariates [16.230648949593153]
"Community detection" has arguably received the most attention in the scientific community.
We propose a block model with a co-dependent random partition prior.
Our model has the ability to learn the number of the communities via posterior inference without having to assume it to be known.
arXiv Detail & Related papers (2022-03-04T01:58:35Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point
Clouds [51.47100091540298]
We present Cascaded Primitive Fitting Networks (CPFN) that relies on an adaptive patch sampling network to assemble detection results of global and local primitive detection networks.
CPFN improves the state-of-the-art SPFN performance by 13-14% on high-resolution point cloud datasets and specifically improves the detection of fine-scale primitives by 20-22%.
arXiv Detail & Related papers (2021-08-31T23:27:33Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.