Model Assembly Learning with Heterogeneous Layer Weight Merging
- URL: http://arxiv.org/abs/2503.21657v1
- Date: Thu, 27 Mar 2025 16:21:53 GMT
- Title: Model Assembly Learning with Heterogeneous Layer Weight Merging
- Authors: Yi-Kai Zhang, Jin Wang, Xu-Xiang Zhong, De-Chuan Zhan, Han-Jia Ye,
- Abstract summary: We introduce Model Assembly Learning (MAL), a novel paradigm for model merging.<n>MAL integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities.
- Score: 57.8462476398611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
Related papers
- AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization [86.8133939108057]
We propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs.
Our method tackles the challenges in three steps: mapping, merging and searching.
As the first model merging method capable of merging heterogeneous MLLMs without labeled data, AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
arXiv Detail & Related papers (2025-03-31T05:13:02Z) - Non-Uniform Parameter-Wise Model Merging [17.989809995141044]
We introduce a novel approach, Non-uniform.<n>wise Model Merging, or NP Merge, which merges models by learning the contribution of each.<n> parameter to the final model using gradient-based optimization.<n>We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods.
arXiv Detail & Related papers (2024-12-20T00:05:14Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging [11.186194228460273]
We propose a preference-aware model merging problem in which the performance of the merged model on each base model's task is treated as an objective.<n>We show that the proposed model merging produces diverse trade-off models and achieves higher test accuracy compared to state-of-the-art merging baselines.
arXiv Detail & Related papers (2024-08-22T03:41:14Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - PLeaS -- Merging Models with Permutations and Least Squares [43.17620198572947]
We propose a new two-step algorithm to merge models -- termed PLeaS -- which relaxes constraints.<n>PLeaS partially matches nodes in each layer by maximizing alignment.<n>We also demonstrate how our method can be extended to address a challenging scenario where no data is available from the fine-tuning domains.
arXiv Detail & Related papers (2024-07-02T17:24:04Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth.
We show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity.
Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
arXiv Detail & Related papers (2023-06-15T10:48:59Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.