X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
- URL: http://arxiv.org/abs/2503.21779v1
- Date: Thu, 27 Mar 2025 17:59:57 GMT
- Title: X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
- Authors: Weihao Yu, Yuanhao Cai, Ruyi Zha, Zhiwen Fan, Chenxin Li, Yixuan Yuan,
- Abstract summary: X$2$-Gaussian is a novel framework for continuous-time 4DCT reconstruction.<n>It integrates dynamic radiative splatting with self-supervised respiratory motion learning.<n>It achieves a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior splatting techniques.
- Score: 45.31051025401413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
Related papers
- 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images [49.170407434313475]
Existing methods often produce suboptimal results or require excessive computation time.<n>We propose 4D radiative Gaussian splatting (4DRGS) to achieve high-quality reconstruction efficiently.<n>4DRGS achieves impressive results in 5 minutes training, which is 32x faster than the state-of-the-art method.
arXiv Detail & Related papers (2024-12-17T13:51:56Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - Real-Time Spatio-Temporal Reconstruction of Dynamic Endoscopic Scenes with 4D Gaussian Splatting [1.7947477507955865]
This paper presents ST-Endo4DGS, a novel framework that models the dynamics of dynamic endoscopic scenes.
This approach enables precise representation of deformable tissue, capturing spatial and temporal correlations in real time.
arXiv Detail & Related papers (2024-11-02T11:24:27Z) - Resolving Variable Respiratory Motion From Unsorted 4D Computed Tomography [0.6938240959023204]
Surrogate driven motion models can estimate variable motion across multiple cycles based on CT segments unsorted' from 4DCT.
Our method produces a high-quality motion-compensated image together with estimates of the motion, including breath-to-breath variability.
arXiv Detail & Related papers (2024-06-30T11:22:55Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - CPT-Interp: Continuous sPatial and Temporal Motion Modeling for 4D Medical Image Interpolation [22.886841531680567]
Motion information from 4D medical imaging offers critical insights into dynamic changes in patient anatomy for clinical assessments and radiotherapy planning.
However, inherent physical and technical constraints of imaging hardware often necessitate a compromise between temporal resolution and image quality.
We propose a novel approach for continuously modeling patient anatomic motion using implicit neural representation.
arXiv Detail & Related papers (2024-05-24T09:35:42Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSets is a 4D diffusion model for dynamic surface reconstruction from point cloud sequences.
We parameterize 4D dynamics with latent sets instead of using global latent codes.
For more temporally-coherent object tracking, we synchronously denoise deformation latent sets and exchange information across multiple frames.
arXiv Detail & Related papers (2024-01-12T15:05:08Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - AliasNet: Alias Artefact Suppression Network for Accelerated
Phase-Encode MRI [4.752084030395196]
Sparse reconstruction is an important aspect of MRI, helping to reduce acquisition time and improve spatial-temporal resolution.
Experiments conducted on retrospectively under-sampled brain and knee data demonstrate that combination of the proposed 1D AliasNet modules with existing 2D deep learned (DL) recovery techniques leads to an improvement in image quality.
arXiv Detail & Related papers (2023-02-17T13:16:17Z) - RMSim: Controlled Respiratory Motion Simulation on Static Patient Scans [7.575469466607952]
We present a novel 3D Seq2Seq deep learning respiratory motion simulator (RMSim) that learns from 4D-CT images.
10-phase 4D-CTs of 140 internal patients were used to train and test RMSim.
We validated our RMSim output with both private and public benchmark datasets.
arXiv Detail & Related papers (2023-01-26T21:20:14Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance.
Using 4D information for the model input improves performance while maintaining reasonable inference times.
arXiv Detail & Related papers (2020-04-21T15:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.