Enhancing Accuracy of Quantum-Selected Configuration Interaction Calculations using Multireference Perturbation Theory: Application to Aromatic Molecules
- URL: http://arxiv.org/abs/2503.22221v1
- Date: Fri, 28 Mar 2025 08:12:39 GMT
- Title: Enhancing Accuracy of Quantum-Selected Configuration Interaction Calculations using Multireference Perturbation Theory: Application to Aromatic Molecules
- Authors: Soichi Shirai, Shih-Yen Tseng, Hokuto Iwakiri, Takahiro Horiba, Hirotoshi Hirai, Sho Koh,
- Abstract summary: Quantum-selected configuration interaction (QSCI) is a novel quantum-classical hybrid algorithm for quantum chemistry calculations.<n>The incorporation of the perturbation treatment was found to provide improved accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum-selected configuration interaction (QSCI) is a novel quantum-classical hybrid algorithm for quantum chemistry calculations. This method identifies electron configurations having large weights for the target state using quantum devices and allows CI calculations to be performed with the selected configurations on classical computers. In principle, the QSCI algorithm can take advantage of the ability to handle large configuration spaces while reducing the negative effects of noise on the calculated values. At present, QSCI calculations are limited by qubit noise during the input state preparation and measurement process, restricting them to small active spaces. These limitations make it difficult to perform calculations with quantitative accuracy. The present study demonstrates a computational scheme based on multireference perturbation theory calculations on a classical computer, using the QSCI wavefunction as a reference. This method was applied to ground and excited state calculations for two typical aromatic molecules, naphthalene and tetracene. The incorporation of the perturbation treatment was found to provide improved accuracy. Extension of the reference space based on the QSCI-selected configurations as a means of further improvement was also investigated.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.<n>Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
We embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC)
We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit.
The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties.
arXiv Detail & Related papers (2024-05-19T14:31:01Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Capturing many-body correlation effects with quantum and classical
computing [40.7853309684189]
We show the efficiency of Quantum Phase Estor (QPE) in identifying core-level states relevant to x-ray photoelectron spectroscopy.
We compare and validate the QPE predictions with exact diagonalization and real-time equation-of-motion coupled cluster formulations.
arXiv Detail & Related papers (2024-02-18T01:26:45Z) - Workflow for practical quantum chemical calculations with quantum phase estimation algorithm: electronic ground and π-π* excited states of benzene and its derivatives† [0.0]
Quantum computers are expected to perform the full-configuration interaction calculations with less computational resources compared to classical ones.
QPE-based quantum chemical calculations have been reported even for numerical simulations on a classical computer.
We report the QPE simulations of the electronic ground and the pi-pi* excited singlet state of benzene and its chloro- and nitroderivatives.
arXiv Detail & Related papers (2023-12-27T01:57:39Z) - Electronic Structure Calculations using Quantum Computing [0.0]
We present a hybrid Classical-Quantum computational procedure that uses the Variational Quantum Eigensolver (VQE) algorithm.
Our algorithm offers a streamlined process requiring fewer computational resources than classical methods.
Results indicate the potential of the algorithm to expedite the development of new materials and technologies.
arXiv Detail & Related papers (2023-05-13T12:02:05Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.