RELD: Regularization by Latent Diffusion Models for Image Restoration
- URL: http://arxiv.org/abs/2503.22563v1
- Date: Fri, 28 Mar 2025 16:04:21 GMT
- Title: RELD: Regularization by Latent Diffusion Models for Image Restoration
- Authors: Pasquale Cascarano, Lorenzo Stacchio, Andrea Sebastiani, Alessandro Benfenati, Ulugbek S. Kamilov, Gustavo Marfia,
- Abstract summary: We introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting.<n>The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images.
- Score: 41.602636013364574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Diffusion Models have become the new state-of-the-art in deep generative modeling, ending the long-time dominance of Generative Adversarial Networks. Inspired by the Regularization by Denoising principle, we introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting, exploiting its regularization properties. This approach, under appropriate conditions that can be easily met in various imaging applications, allows for reduced computational cost while achieving high-quality results. The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images, for image denoising, deblurring, and super-resolution tasks. The numerical experiments show that RELD is competitive with other state-of-the-art methods, particularly achieving remarkable results when evaluated using perceptual quality metrics.
Related papers
- Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Anomaly Detection with Conditioned Denoising Diffusion Models [32.37548329437798]
We introduce Denoising Diffusion Anomaly Detection (DDAD), a novel denoising process for image reconstruction conditioned on a target image.
Our anomaly detection framework employs the conditioning mechanism, where the target image is set as the input image to guide the denoising process.
DDAD achieves state-of-the-art results of (99.8 %) and (98.9 %) image-level AUROC respectively.
arXiv Detail & Related papers (2023-05-25T11:54:58Z) - CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for
Low-Dose CT Denoising and Generalization [41.64072751889151]
Low-dose computed tomography (LDCT) images suffer from noise and artifacts due to photon starvation and electronic noise.
This paper presents a novel COntextual eRror-modulated gEneralized Diffusion model for low-dose CT (LDCT) denoising, termed CoreDiff.
arXiv Detail & Related papers (2023-04-04T14:13:13Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
We reformulate the reconstruction process using a diffusion model into a noise-to-norm paradigm.
We propose a rapid one-step denoising paradigm, significantly faster than the traditional iterative denoising in diffusion models.
The segmentation sub-network predicts pixel-level anomaly scores using the input image and its anomaly-free restoration.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - Unsupervised Visual Defect Detection with Score-Based Generative Model [17.610722842950555]
We focus on the unsupervised visual defect detection and localization tasks.
We propose a novel framework based on the recent score-based generative models.
We evaluate our method on several datasets to demonstrate its effectiveness.
arXiv Detail & Related papers (2022-11-29T11:06:29Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping in an unsupervised manner.
Existing methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method called Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-02-23T15:22:35Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.