Why Representation Engineering Works: A Theoretical and Empirical Study in Vision-Language Models
- URL: http://arxiv.org/abs/2503.22720v1
- Date: Tue, 25 Mar 2025 20:32:15 GMT
- Title: Why Representation Engineering Works: A Theoretical and Empirical Study in Vision-Language Models
- Authors: Bowei Tian, Xuntao Lyu, Meng Liu, Hongyi Wang, Ang Li,
- Abstract summary: We develop a theoretical framework that explains the stability of neural activity across layers using the principal eigenvector.<n>This work transforms Representation Engineering (RepE) into a structured theoretical framework, opening new directions for improving AI robustness, fairness, and transparency.
- Score: 17.987141330832582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation Engineering (RepE) has emerged as a powerful paradigm for enhancing AI transparency by focusing on high-level representations rather than individual neurons or circuits. It has proven effective in improving interpretability and control, showing that representations can emerge, propagate, and shape final model outputs in large language models (LLMs). However, in Vision-Language Models (VLMs), visual input can override factual linguistic knowledge, leading to hallucinated responses that contradict reality. To address this challenge, we make the first attempt to extend RepE to VLMs, analyzing how multimodal representations are preserved and transformed. Building on our findings and drawing inspiration from successful RepE applications, we develop a theoretical framework that explains the stability of neural activity across layers using the principal eigenvector, uncovering the underlying mechanism of RepE. We empirically validate these instrinsic properties, demonstrating their broad applicability and significance. By bridging theoretical insights with empirical validation, this work transforms RepE from a descriptive tool into a structured theoretical framework, opening new directions for improving AI robustness, fairness, and transparency.
Related papers
- Video Event Reasoning and Prediction by Fusing World Knowledge from LLMs with Vision Foundation Models [10.1080193179562]
Current understanding models excel at recognizing "what" but fall short in high-level cognitive tasks like causal reasoning and future prediction.<n>We propose a novel framework that fuses a powerful Vision Foundation Model for deep visual perception with a Large Language Model (LLM) serving as a knowledge-driven reasoning core.
arXiv Detail & Related papers (2025-07-08T09:43:17Z) - Convergence of Spectral Principal Paths: How Deep Networks Distill Linear Representations from Noisy Inputs [17.987141330832582]
High-level representations have become a central focus in enhancing AI transparency and control, shifting attention from individual neurons or circuits to structured semantic directions that align with human-interpretable concepts.<n>Motivated by the Linear Representation Hypothesis (LRH), we propose the Input-Space Linearity Hypothesis (ISLH), which posits that concept-aligned directions originate in the input space and are selectively amplified with increasing depth.<n>We then introduce the Spectral Principal Path (SPP) framework, which formalizes how deep networks progressively distill linear representations along a small set of dominant spectral directions.
arXiv Detail & Related papers (2025-06-10T08:08:52Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment [53.90425382758605]
We show how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks.
Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks.
arXiv Detail & Related papers (2025-01-06T13:37:13Z) - Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities.
This work provides a fine mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities.
arXiv Detail & Related papers (2024-11-04T15:54:32Z) - ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Causality-based Cross-Modal Representation Learning for
Vision-and-Language Navigation [15.058687283978077]
Vision-and-Language Navigation (VLN) has gained significant research interest in recent years due to its potential applications in real-world scenarios.
Existing VLN methods struggle with the issue of spurious associations, resulting in poor generalization with a significant performance gap between seen and unseen environments.
We propose a unified framework CausalVLN based on the causal learning paradigm to train a robust navigator capable of learning unbiased feature representations.
arXiv Detail & Related papers (2024-03-06T02:01:38Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
We show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture.
With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner.
For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
arXiv Detail & Related papers (2024-02-23T16:50:07Z) - Emergence and Function of Abstract Representations in Self-Supervised
Transformers [0.0]
We study the inner workings of small-scale transformers trained to reconstruct partially masked visual scenes.
We show that the network develops intermediate abstract representations, or abstractions, that encode all semantic features of the dataset.
Using precise manipulation experiments, we demonstrate that abstractions are central to the network's decision-making process.
arXiv Detail & Related papers (2023-12-08T20:47:15Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.