Harnessing Mixed Features for Imbalance Data Oversampling: Application to Bank Customers Scoring
- URL: http://arxiv.org/abs/2503.22730v1
- Date: Wed, 26 Mar 2025 08:53:40 GMT
- Title: Harnessing Mixed Features for Imbalance Data Oversampling: Application to Bank Customers Scoring
- Authors: Abdoulaye Sakho, Emmanuel Malherbe, Carl-Erik Gauthier, Erwan Scornet,
- Abstract summary: We introduce MGS-GRF, an oversampling strategy designed for mixed features.<n>We show that MGS-GRF exhibits two important properties: (i) the coherence i.e. the ability to only generate combinations of categorical features that are already present in the original dataset and (ii) association, i.e. the ability to preserve the dependence between continuous and categorical features.
- Score: 5.091061468748012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates rare event detection on tabular data within binary classification. Standard techniques to handle class imbalance include SMOTE, which generates synthetic samples from the minority class. However, SMOTE is intrinsically designed for continuous input variables. In fact, despite SMOTE-NC-its default extension to handle mixed features (continuous and categorical variables)-very few works propose procedures to synthesize mixed features. On the other hand, many real-world classification tasks, such as in banking sector, deal with mixed features, which have a significant impact on predictive performances. To this purpose, we introduce MGS-GRF, an oversampling strategy designed for mixed features. This method uses a kernel density estimator with locally estimated full-rank covariances to generate continuous features, while categorical ones are drawn from the original samples through a generalized random forest. Empirically, contrary to SMOTE-NC, we show that MGS-GRF exhibits two important properties: (i) the coherence i.e. the ability to only generate combinations of categorical features that are already present in the original dataset and (ii) association, i.e. the ability to preserve the dependence between continuous and categorical features. We also evaluate the predictive performances of LightGBM classifiers trained on data sets, augmented with synthetic samples from various strategies. Our comparison is performed on simulated and public real-world data sets, as well as on a private data set from a leading financial institution. We observe that synthetic procedures that have the properties of coherence and association display better predictive performances in terms of various predictive metrics (PR and ROC AUC...), with MGS-GRF being the best one. Furthermore, our method exhibits promising results for the private banking application, with development pipeline being compliant with regulatory constraints.
Related papers
- EBES: Easy Benchmarking for Event Sequences [17.277513178760348]
Event Sequences (EvS) refer to sequential data characterized by irregular sampling intervals and a mix of categorical and numerical features.<n>EBES is a comprehensive benchmark for EvS classification with sequence-level targets.<n>It features standardized evaluation scenarios and protocols, along with an open-source PyTorch library that implements 9 modern models.
arXiv Detail & Related papers (2024-10-04T13:03:43Z) - Bayesian Joint Additive Factor Models for Multiview Learning [7.254731344123118]
A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes.<n>We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components.<n>Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors.
arXiv Detail & Related papers (2024-06-02T15:35:45Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Conditional Feature Importance for Mixed Data [1.6114012813668934]
We develop a conditional predictive impact (CPI) framework with knockoff sampling.
We show that our proposed workflow controls type I error, achieves high power and is in line with results given by other conditional FI measures.
Our findings highlight the necessity of developing statistically adequate, specialized methods for mixed data.
arXiv Detail & Related papers (2022-10-06T16:52:38Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.