Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
- URL: http://arxiv.org/abs/2503.22913v1
- Date: Fri, 28 Mar 2025 23:43:33 GMT
- Title: Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
- Authors: Xinyu Wang, Linrui Ma, Jerry Huang, Peng Lu, Prasanna Parthasarathi, Xiao-Wen Chang, Boxing Chen, Yufei Cui,
- Abstract summary: We introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval.<n>Experiments on a variety of linear recurrent models demonstrate significant performance gains on a variety of synthetic as well as real-world natural language tasks.
- Score: 24.84741364872597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs.
Related papers
- Platonic Grounding for Efficient Multimodal Language Models [22.715168904364756]
We motivate and propose a simple modification to existing multimodal frameworks that rely on aligning pretrained models.
Our work also has implications for combining pretrained models into larger systems efficiently.
arXiv Detail & Related papers (2025-04-27T18:56:26Z) - Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Joint Fine-tuning and Conversion of Pretrained Speech and Language Models towards Linear Complexity [11.302828987873497]
We present a Cross-Architecture Layerwise Distillation (CALD) approach that jointly converts a transformer model to a linear time substitute and fine-tunes it to a target task.<n>We show that CALD can effectively recover the result of the original model, and that the guiding strategy contributes to the result.
arXiv Detail & Related papers (2024-10-09T13:06:43Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
We show that it is possible to significantly improve the performance of Large Language Models by selectively removing higher-order components of their weight matrices.
This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed.
We show extensive experiments demonstrating the generality of this finding across language models and datasets.
arXiv Detail & Related papers (2023-12-21T03:51:08Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.