FRAME: Floor-aligned Representation for Avatar Motion from Egocentric Video
- URL: http://arxiv.org/abs/2503.23094v1
- Date: Sat, 29 Mar 2025 14:26:06 GMT
- Title: FRAME: Floor-aligned Representation for Avatar Motion from Egocentric Video
- Authors: Andrea Boscolo Camiletto, Jian Wang, Eduardo Alvarado, Rishabh Dabral, Thabo Beeler, Marc Habermann, Christian Theobalt,
- Abstract summary: Egocentric motion capture with a head-mounted body-facing stereo camera is crucial for VR and AR applications.<n>Existing methods rely on synthetic pretraining and struggle to generate smooth and accurate predictions in real-world settings.<n>We propose FRAME, a simple yet effective architecture that combines device pose and camera feeds for state-of-the-art body pose prediction.
- Score: 52.33896173943054
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Egocentric motion capture with a head-mounted body-facing stereo camera is crucial for VR and AR applications but presents significant challenges such as heavy occlusions and limited annotated real-world data. Existing methods rely on synthetic pretraining and struggle to generate smooth and accurate predictions in real-world settings, particularly for lower limbs. Our work addresses these limitations by introducing a lightweight VR-based data collection setup with on-board, real-time 6D pose tracking. Using this setup, we collected the most extensive real-world dataset for ego-facing ego-mounted cameras to date in size and motion variability. Effectively integrating this multimodal input -- device pose and camera feeds -- is challenging due to the differing characteristics of each data source. To address this, we propose FRAME, a simple yet effective architecture that combines device pose and camera feeds for state-of-the-art body pose prediction through geometrically sound multimodal integration and can run at 300 FPS on modern hardware. Lastly, we showcase a novel training strategy to enhance the model's generalization capabilities. Our approach exploits the problem's geometric properties, yielding high-quality motion capture free from common artifacts in prior works. Qualitative and quantitative evaluations, along with extensive comparisons, demonstrate the effectiveness of our method. Data, code, and CAD designs will be available at https://vcai.mpi-inf.mpg.de/projects/FRAME/
Related papers
- Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image [14.485182089870928]
We propose a novel framework that leverages motion blur as a rich cue for motion estimation.<n>Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image.<n>Our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements.
arXiv Detail & Related papers (2025-03-21T17:58:56Z) - Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera [49.82535393220003]
Dyn-HaMR is the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild.<n>We show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery.<n>This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras.
arXiv Detail & Related papers (2024-12-17T12:43:10Z) - Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering [54.468355408388675]
We build a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images.
We apply a diversity-based sampling algorithm to optimize the camera selection.
We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments.
arXiv Detail & Related papers (2024-09-11T08:36:49Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - UmeTrack: Unified multi-view end-to-end hand tracking for VR [34.352638006495326]
Real-time tracking of 3D hand pose in world space is a challenging problem and plays an important role in VR interaction.
We present a unified end-to-end differentiable framework for multi-view, multi-frame hand tracking that directly predicts 3D hand pose in world space.
arXiv Detail & Related papers (2022-10-31T19:09:21Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
We present a solution to egocentric 3D body pose estimation from monocular images captured from downward looking fish-eye cameras installed on the rim of a head mounted VR device.
This unusual viewpoint leads to images with unique visual appearance, with severe self-occlusions and perspective distortions.
We propose an encoder-decoder architecture with a novel multi-branch decoder designed to account for the varying uncertainty in 2D predictions.
arXiv Detail & Related papers (2020-11-02T16:18:06Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
We propose a temporal regression network with a gated convolution module to transform 2D joints to 3D.
A simple yet effective localization approach is also conducted to transform the normalized pose to the global trajectory.
Our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods.
arXiv Detail & Related papers (2020-10-31T04:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.