Language Guided Concept Bottleneck Models for Interpretable Continual Learning
- URL: http://arxiv.org/abs/2503.23283v1
- Date: Sun, 30 Mar 2025 02:41:55 GMT
- Title: Language Guided Concept Bottleneck Models for Interpretable Continual Learning
- Authors: Lu Yu, Haoyu Han, Zhe Tao, Hantao Yao, Changsheng Xu,
- Abstract summary: Continual learning aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information.<n>Most existing CL methods focus primarily on preserving learned knowledge to improve model performance.<n>We introduce a novel framework that integrates language-guided Concept Bottleneck Models to address both challenges.
- Score: 62.09201360376577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continual learning (CL) aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information. CL faces the challenge of mitigating catastrophic forgetting while maintaining interpretability across tasks. Most existing CL methods focus primarily on preserving learned knowledge to improve model performance. However, as new information is introduced, the interpretability of the learning process becomes crucial for understanding the evolving decision-making process, yet it is rarely explored. In this paper, we introduce a novel framework that integrates language-guided Concept Bottleneck Models (CBMs) to address both challenges. Our approach leverages the Concept Bottleneck Layer, aligning semantic consistency with CLIP models to learn human-understandable concepts that can generalize across tasks. By focusing on interpretable concepts, our method not only enhances the models ability to retain knowledge over time but also provides transparent decision-making insights. We demonstrate the effectiveness of our approach by achieving superior performance on several datasets, outperforming state-of-the-art methods with an improvement of up to 3.06% in final average accuracy on ImageNet-subset. Additionally, we offer concept visualizations for model predictions, further advancing the understanding of interpretable continual learning.
Related papers
- Retaining and Enhancing Pre-trained Knowledge in Vision-Language Models with Prompt Ensembling [5.6987175375687995]
We introduce a novel prompt ensemble learning approach called Group-wise Prompt Ensemble (GPE)<n>Our method aims to enhance CLIP's zero-shot capabilities by incorporating new domain knowledge while improving its robustness against data distribution shifts.<n>Our approach hinges on three main strategies: prompt grouping with masked attention to optimize CLIP's adaptability while safeguarding its zero-shot capabilities; the incorporation of auxiliary prompts for the seamless integration of new domain insights without disrupting the original model's representation; and an ensemble learning strategy that effectively merges original and new knowledge.
arXiv Detail & Related papers (2024-12-10T00:40:31Z) - Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - A Survey to Recent Progress Towards Understanding In-Context Learning [37.933016939520684]
In-Context Learning (ICL) empowers Large Language Models (LLMs) with the ability to learn from a few examples provided in the prompt.<n>Despite encouragingly empirical success, the underlying mechanism of ICL remains unclear.
arXiv Detail & Related papers (2024-02-03T17:13:03Z) - ICICLE: Interpretable Class Incremental Continual Learning [35.105786309067895]
Interpretable Class-InCremental LEarning (ICICLE) is an exemplar-free approach that adopts a prototypical part-based approach.
Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning.
arXiv Detail & Related papers (2023-03-14T11:31:45Z) - DER: Dynamically Expandable Representation for Class Incremental
Learning [30.573653645134524]
We address the problem of class incremental learning, which is a core step towards achieving adaptive vision intelligence.
We propose a novel two-stage learning approach that utilizes a dynamically expandable representation for more effective incremental concept modeling.
We conduct extensive experiments on the three class incremental learning benchmarks and our method consistently outperforms other methods with a large margin.
arXiv Detail & Related papers (2021-03-31T03:16:44Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.