Graph-Structured Driven Dual Adaptation for Mitigating Popularity Bias
- URL: http://arxiv.org/abs/2503.23358v1
- Date: Sun, 30 Mar 2025 08:26:29 GMT
- Title: Graph-Structured Driven Dual Adaptation for Mitigating Popularity Bias
- Authors: Miaomiao Cai, Lei Chen, Yifan Wang, Zhiyong Cheng, Min Zhang, Meng Wang,
- Abstract summary: Popularity bias challenges recommender systems by causing uneven recommendation performance and amplifying the Matthew effect.<n>Existing supervised alignment and reweighting methods mitigate this bias but have key limitations.<n>We propose the Graph-Structured Dual Adaptation Framework (GSDA) to address these issues.
- Score: 29.518103753073145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popularity bias challenges recommender systems by causing uneven recommendation performance and amplifying the Matthew effect. Limited user-item interactions confine unpopular items within embedding neighborhoods of few users, leading to representation collapse and reduced model generalization. Existing supervised alignment and reweighting methods mitigate this bias but have key limitations: (1) ignoring inherent variability across Graph Convolutional Networks (GCNs) layers, causing negative effects in deeper layers; (2) reliance on fixed hyperparameters to balance item popularity, restricting adaptability and increasing complexity. To address these issues, we propose the Graph-Structured Dual Adaptation Framework (GSDA). Our theoretical analysis identifies a crucial limitation of supervised alignment methods caused by over-smoothing in GCNs. As GCN layers deepen, popular and unpopular items increasingly lose distinctiveness, quantified by reduced conditional entropy. This diminished distinctiveness weakens supervised alignment effectiveness in mitigating popularity bias. Motivated by this, GSDA captures structural and distribution characteristics from the adjacency matrix through a dual adaptive strategy. First, a hierarchical adaptive alignment mechanism uses the adjacency matrix's Frobenius norm for layer-specific weight decay, countering conditional entropy reduction effects at deeper layers. Second, a distribution-aware dynamic contrast weighting strategy, guided by a real-time Gini coefficient, removes dependence on fixed hyperparameters, enabling adaptability to diverse data. Experiments on three benchmark datasets demonstrate GSDA significantly alleviates popularity bias and consistently outperforms state-of-the-art recommendation methods.
Related papers
- Unifying Perplexing Behaviors in Modified BP Attributions through Alignment Perspective [61.5509267439999]
We present a unified theoretical framework for methods like GBP, RectGrad, LRP, and DTD.<n>We demonstrate that they achieve input alignment by combining the weights of activated neurons.<n>This alignment improves the visualization quality and reduces sensitivity to weight randomization.
arXiv Detail & Related papers (2025-03-14T07:58:26Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
Graph anomaly detection (GAD) is a challenging binary classification problem.
Gallon neural networks (GNNs) benefit the classification of normals from aggregating homophilous neighbors.
We propose a framework to mitigate the effect of heterophilous neighbors and make them invariant.
arXiv Detail & Related papers (2024-01-25T13:07:34Z) - HC-Ref: Hierarchical Constrained Refinement for Robust Adversarial
Training of GNNs [7.635985143883581]
Adversarial training, which has been shown to be one of the most effective defense mechanisms against adversarial attacks in computer vision, holds great promise for enhancing the robustness of GNNs.
We propose a hierarchical constraint refinement framework (HC-Ref) that enhances the anti-perturbation capabilities of GNNs and downstream classifiers separately.
arXiv Detail & Related papers (2023-12-08T07:32:56Z) - OrthoReg: Improving Graph-regularized MLPs via Orthogonality
Regularization [66.30021126251725]
Graph Neural Networks (GNNs) are currently dominating in modeling graphstructure data.
Graph-regularized networks (GR-MLPs) implicitly inject the graph structure information into model weights, while their performance can hardly match that of GNNs in most tasks.
We show that GR-MLPs suffer from dimensional collapse, a phenomenon in which the largest a few eigenvalues dominate the embedding space.
We propose OrthoReg, a novel GR-MLP model to mitigate the dimensional collapse issue.
arXiv Detail & Related papers (2023-01-31T21:20:48Z) - A Generalized Proportionate-Type Normalized Subband Adaptive Filter [25.568699776077164]
We show that a new design criterion, i.e., the least squares on subband errors regularized by a weighted norm, can be used to generalize the proportionate-type normalized subband adaptive filtering (PtNSAF) framework.
The impact of the proposed generalized PtNSAF (GPtNSAF) is studied for the system identification problem via computer simulations.
arXiv Detail & Related papers (2021-11-17T07:49:38Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
We show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with homogeneous activation functions.
We propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network.
arXiv Detail & Related papers (2020-08-07T02:55:28Z) - When Does Preconditioning Help or Hurt Generalization? [74.25170084614098]
We show how the textitimplicit bias of first and second order methods affects the comparison of generalization properties.
We discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between GD and NGD.
arXiv Detail & Related papers (2020-06-18T17:57:26Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
We propose two regularizers to prevent hypersphere collapse in deep SVDD.
The first regularizer is based on injecting random noise via the standard cross-entropy loss.
The second regularizer penalizes the minibatch variance when it becomes too small.
arXiv Detail & Related papers (2020-01-24T03:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.