Accelerated Stein Variational Gradient Flow
- URL: http://arxiv.org/abs/2503.23462v2
- Date: Wed, 09 Apr 2025 12:35:29 GMT
- Title: Accelerated Stein Variational Gradient Flow
- Authors: Viktor Stein, Wuchen Li,
- Abstract summary: Stein variational gradient descent (SVGD) is a kernel-based particle method for sampling from a target distribution.<n>We introduce ASVGD, an accelerated SVGD, based on an accelerated gradient flow in a metric space of probability densities.<n>We derive a momentum-based discrete-time sampling algorithm, which evolves a set of particles deterministically.
- Score: 2.384873896423002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stein variational gradient descent (SVGD) is a kernel-based particle method for sampling from a target distribution, e.g., in generative modeling and Bayesian inference. SVGD does not require estimating the gradient of the log-density, which is called score estimation. In practice, SVGD can be slow compared to score-estimation based sampling algorithms. To design fast and efficient high-dimensional sampling algorithms, we introduce ASVGD, an accelerated SVGD, based on an accelerated gradient flow in a metric space of probability densities following Nesterov's method. We then derive a momentum-based discrete-time sampling algorithm, which evolves a set of particles deterministically. To stabilize the particles' momentum update, we also study a Wasserstein metric regularization. For the generalized bilinear kernel and the Gaussian kernel, toy numerical examples with varied target distributions demonstrate the effectiveness of ASVGD compared to SVGD and other popular sampling methods.
Related papers
- Accelerating Convergence of Stein Variational Gradient Descent via Deep
Unfolding [5.584060970507506]
Stein variational gradient descent (SVGD) is a prominent particle-based variational inference method used for sampling a target distribution.
In this paper, we propose novel trainable algorithms that incorporate a deep-learning technique called deep unfolding,into SVGD.
arXiv Detail & Related papers (2024-02-23T06:24:57Z) - Provably Fast Finite Particle Variants of SVGD via Virtual Particle
Stochastic Approximation [9.065034043031668]
Stein Variational Gradient Descent (SVGD) is a popular variational inference which simulates an interacting particle system to approximately sample from a target distribution.
We introduce the notion of virtual particles and develop novel approximations of population-limit dynamics in the space of probability measures.
We show that the $n$ particles output by VP-SVGD and GB-SVGD, run for $T$ steps with batch-size $K$, are as good as i.i.i.d samples from a distribution whose Kernel Stein Discrepancy to the target is at most $Oleft(tfrac
arXiv Detail & Related papers (2023-05-27T19:21:28Z) - Augmented Message Passing Stein Variational Gradient Descent [3.5788754401889014]
We study the isotropy property of finite particles during the convergence process.
All particles tend to cluster around the particle center within a certain range.
Our algorithm achieves satisfactory accuracy and overcomes the variance collapse problem in various benchmark problems.
arXiv Detail & Related papers (2023-05-18T01:13:04Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - A Finite-Particle Convergence Rate for Stein Variational Gradient
Descent [47.6818454221125]
We provide the first finite-particle convergence rate for Stein variational descent gradient (SVGD)
Our explicit, non-asymptotic proof strategy will serve as a template for future refinements.
arXiv Detail & Related papers (2022-11-17T17:50:39Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
We introduce a scalable scheme to approximate Wasserstein gradient flows.
Our approach relies on input neural networks (ICNNs) to discretize the JKO steps.
As a result, we can sample from the measure at each step of the gradient diffusion and compute its density.
arXiv Detail & Related papers (2021-06-01T19:21:48Z) - Kernel Stein Generative Modeling [68.03537693810972]
Gradient Langevin Dynamics (SGLD) demonstrates impressive results with energy-based models on high-dimensional and complex data distributions.
Stein Variational Gradient Descent (SVGD) is a deterministic sampling algorithm that iteratively transports a set of particles to approximate a given distribution.
We propose noise conditional kernel SVGD (NCK-SVGD), that works in tandem with the recently introduced Noise Conditional Score Network estimator.
arXiv Detail & Related papers (2020-07-06T21:26:04Z) - A Non-Asymptotic Analysis for Stein Variational Gradient Descent [44.30569261307296]
We provide a novel finite time analysis for the Stein Variational Gradient Descent algorithm.
We provide a descent lemma establishing that the algorithm decreases the objective at each iteration.
We also provide a convergence result of the finite particle system corresponding to the practical implementation of SVGD to its population version.
arXiv Detail & Related papers (2020-06-17T12:01:33Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
We propose a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions.
Our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo.
We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN)
In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions.
arXiv Detail & Related papers (2020-03-01T22:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.