Biologically Inspired Spiking Diffusion Model with Adaptive Lateral Selection Mechanism
- URL: http://arxiv.org/abs/2503.23767v1
- Date: Mon, 31 Mar 2025 06:31:50 GMT
- Title: Biologically Inspired Spiking Diffusion Model with Adaptive Lateral Selection Mechanism
- Authors: Linghao Feng, Dongcheng Zhao, Sicheng Shen, Yi Zeng,
- Abstract summary: We develop a novel diffusion model based on spiking neural networks (SNNs)<n>We leverage this spiking inner loop alongside a lateral connection mechanism to iteratively refine the substructure selection network.<n>Our model consistently surpasses state-of-the-art SNN-based generative models across multiple benchmark datasets.
- Score: 5.135901078097114
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lateral connection is a fundamental feature of biological neural circuits, facilitating local information processing and adaptive learning. In this work, we integrate lateral connections with a substructure selection network to develop a novel diffusion model based on spiking neural networks (SNNs). Unlike conventional artificial neural networks, SNNs employ an intrinsic spiking inner loop to process sequential binary spikes. We leverage this spiking inner loop alongside a lateral connection mechanism to iteratively refine the substructure selection network, enhancing model adaptability and expressivity. Specifically, we design a lateral connection framework comprising a learnable lateral matrix and a lateral mapping function, both implemented using spiking neurons, to dynamically update lateral connections. Through mathematical modeling, we establish that the proposed lateral update mechanism, under a well-defined local objective, aligns with biologically plausible synaptic plasticity principles. Extensive experiments validate the effectiveness of our approach, analyzing the role of substructure selection and lateral connection during training. Furthermore, quantitative comparisons demonstrate that our model consistently surpasses state-of-the-art SNN-based generative models across multiple benchmark datasets.
Related papers
- Connectivity structure and dynamics of nonlinear recurrent neural networks [46.62658917638706]
We develop a theory to analyze how structure in connectivity shapes the high-dimensional, internally generated activity of neural networks.
Our theory provides tools to relate neural-network architecture and collective dynamics in artificial and biological systems.
arXiv Detail & Related papers (2024-09-03T15:08:37Z) - The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns [3.9848584845601014]
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets"<n>We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays through two approaches.
In the latter approach, the network selects and prunes connections, optimizing the delays in sparse connectivity settings.
Our results demonstrate the potential of combining delay learning with dynamic pruning to develop efficient SNN models for temporal data processing.
arXiv Detail & Related papers (2024-07-07T11:55:48Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning [15.143466733327566]
Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning.
The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators.
We propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN)
arXiv Detail & Related papers (2024-03-29T13:25:19Z) - Deep Continuous Networks [21.849285945717632]
We propose deep continuous networks (DCNs), which combine spatially continuous filters, with the continuous depth framework of neural ODEs.
This allows us to learn the spatial support of the filters during training, as well as model the continuous evolution of feature maps, linking DCNs closely to biological models.
We show that DCNs are versatile and highly applicable to standard image classification and reconstruction problems, where they improve parameter and data efficiency, and allow for meta-parametrization.
arXiv Detail & Related papers (2024-02-02T16:50:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Improving Neural Predictivity in the Visual Cortex with Gated Recurrent
Connections [0.0]
We aim to shift the focus on architectures that take into account lateral recurrent connections, a ubiquitous feature of the ventral visual stream, to devise adaptive receptive fields.
In order to increase the robustness of our approach and the biological fidelity of the activations, we employ specific data augmentation techniques.
arXiv Detail & Related papers (2022-03-22T17:27:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.