MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
- URL: http://arxiv.org/abs/2503.23786v1
- Date: Mon, 31 Mar 2025 07:02:32 GMT
- Title: MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
- Authors: Haoran Shen, Peixian Zhuang, Jiahao Kou, Yuxin Zeng, Haoying Xu, Jiangyun Li,
- Abstract summary: We propose MGD-SAM2, which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation.<n>We first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images.<n>Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales.
- Score: 6.976534642198541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
Related papers
- MemorySAM: Memorize Modalities and Semantics with Segment Anything Model 2 for Multi-modal Semantic Segmentation [22.482211353379927]
Large vision model, AnythingCube Model 2 (SAM2) has shown strong zero-shot segmentation performance on both images and videos.<n>Inspired by cross-frame correlation in videos, we propose to treat multi-modal data as a sequence of frames representing the same scene.<n>Our key idea is to ''memorize'' the modality-agnostic information and'memorize' the semantics related to the targeted scene.
arXiv Detail & Related papers (2025-03-09T17:33:15Z) - UrbanSAM: Learning Invariance-Inspired Adapters for Segment Anything Models in Urban Construction [51.54946346023673]
Urban morphology is inherently complex, with irregular objects of diverse shapes and varying scales.
The Segment Anything Model (SAM) has shown significant potential in segmenting complex scenes.
We propose UrbanSAM, a customized version of SAM specifically designed to analyze complex urban environments.
arXiv Detail & Related papers (2025-02-21T04:25:19Z) - MANet: Fine-Tuning Segment Anything Model for Multimodal Remote Sensing Semantic Segmentation [8.443065903814821]
This study introduces a novel Multimodal Adapter-based Network (MANet) for multimodal remote sensing semantic segmentation.
At the core of this approach is the development of a Multimodal Adapter (MMAdapter), which fine-tunes SAM's image encoder to effectively leverage the model's general knowledge for multimodal data.
This work not only introduces a novel network for multimodal fusion, but also demonstrates, for the first time, SAM's powerful generalization capabilities with Digital Surface Model (DSM) data.
arXiv Detail & Related papers (2024-10-15T00:52:16Z) - Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance [15.435695491233982]
We propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the Segment Anything Model (SAM) for multi-modal salient object detection (SOD)
We develop underlineSAM with seunderlinemantic funderlineeature fuunderlinesion guidancunderlinee (Sammese)
In the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. Specifically, in the mask decoder, a semantic-geometric
arXiv Detail & Related papers (2024-08-27T13:47:31Z) - Segment Anything with Multiple Modalities [61.74214237816402]
We develop MM-SAM, which supports cross-modal and multi-modal processing for robust and enhanced segmentation with different sensor suites.
MM-SAM features two key designs, namely, unsupervised cross-modal transfer and weakly-supervised multi-modal fusion.
It addresses three main challenges: 1) adaptation toward diverse non-RGB sensors for single-modal processing, 2) synergistic processing of multi-modal data via sensor fusion, and 3) mask-free training for different downstream tasks.
arXiv Detail & Related papers (2024-08-17T03:45:40Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model [71.50973774576431]
We propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception.
We introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective.
Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features.
arXiv Detail & Related papers (2024-07-23T06:02:30Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.