AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents
- URL: http://arxiv.org/abs/2503.23948v1
- Date: Mon, 31 Mar 2025 10:58:34 GMT
- Title: AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents
- Authors: Jiaxiang Chen, Jingwei Shi, Lei Gan, Jiale Zhang, Qingyu Zhang, Dongqian Zhang, Xin Pang, Zhucong Li, Yinghui Xu,
- Abstract summary: This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution.<n>We conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications.<n>Results show that AI2Agent significantly reduces deployment time and improves success rates.
- Score: 15.802600809497097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As AI technology advances, it is driving innovation across industries, increasing the demand for scalable AI project deployment. However, deployment remains a critical challenge due to complex environment configurations, dependency conflicts, cross-platform adaptation, and debugging difficulties, which hinder automation and adoption. This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution, self-adaptive debugging, and case \& solution accumulation. AI2Agent dynamically analyzes deployment challenges, learns from past cases, and iteratively refines its approach, significantly reducing human intervention. To evaluate its effectiveness, we conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications. Results show that AI2Agent significantly reduces deployment time and improves success rates. The code and demo video are now publicly accessible.
Related papers
- Integration of Agentic AI with 6G Networks for Mission-Critical Applications: Use-case and Challenges [12.015880968827384]
Agentic AI (AAI) has gained a lot of attention recently due to its ability to analyze textual data through a contextual lens.<n>We propose a novel framework with a multi-layer architecture to realize the AAI.<n>Preliminary analysis shows that the AAI reduces initial response time by 5.6 minutes on average.
arXiv Detail & Related papers (2025-02-19T07:00:53Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.<n>Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.<n>We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Fundamental Risks in the Current Deployment of General-Purpose AI Models: What Have We (Not) Learnt From Cybersecurity? [60.629883024152576]
Large Language Models (LLMs) have seen rapid deployment in a wide range of use cases.<n>OpenAIs Altera are just a few examples of increased autonomy, data access, and execution capabilities.<n>These methods come with a range of cybersecurity challenges.
arXiv Detail & Related papers (2024-12-19T14:44:41Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.<n>We find that with the most competitive agent, 24% of the tasks can be completed autonomously.<n>This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations (AIOps) aims to automate complex operational tasks, like fault localization and root cause analysis, thereby reducing human intervention and customer impact.
This vision paper lays the groundwork for such a framework by first framing the requirements and then discussing design decisions.
We propose AIOpsLab, a prototype implementation leveraging agent-cloud-interface that orchestrates an application, injects real-time faults using chaos engineering, and interfaces with an agent to localize and resolve the faults.
arXiv Detail & Related papers (2024-07-16T20:40:43Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Developing and Operating Artificial Intelligence Models in Trustworthy
Autonomous Systems [8.27310353898034]
This work-in-progress paper aims to close the gap between the development and operation of AI-based AS.
We propose a novel, holistic DevOps approach to put it into practice.
arXiv Detail & Related papers (2020-03-11T17:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.