Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
- URL: http://arxiv.org/abs/2503.24000v1
- Date: Mon, 31 Mar 2025 12:23:31 GMT
- Title: Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
- Authors: Wei Gao, Xinyu Zhou, Peng Sun, Tianwei Zhang, Yonggang Wen,
- Abstract summary: Key-Value cache (textttKV textttcache) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving.<n>It primarily decreases the memory consumption of textttKV textttcache to reduce the computation cost.<n>Despite the development of many compression algorithms, their applications in production environments are still not prevalent.
- Score: 23.2180736755494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.
Related papers
- Compactor: Calibrated Query-Agnostic KV Cache Compression with Approximate Leverage Scores [37.41699761967978]
KV cache is often the dominant resource bottleneck in real-world deployments.<n>We present Compactor, a parameter-free, query-agnostic KV compression strategy.<n>We show that Compactor achieves full KV performance on Longbench while reducing the KV memory burden by 63%, on average.
arXiv Detail & Related papers (2025-07-10T20:03:35Z) - ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration [81.81027217759433]
Large language models (LLMs) are often constrained by the excessive memory required to store the Key-Value ( KV) cache.<n>Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers.<n>We propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache.
arXiv Detail & Related papers (2025-05-30T08:49:27Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.<n>It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.<n>Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference [24.48498639513474]
We introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit.<n>ChunkKV exhibits higher similarity in the preserved indices across different layers.<n>We evaluate ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark.
arXiv Detail & Related papers (2025-02-01T03:49:47Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.<n>We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.<n>Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
We focus on a memory bottleneck imposed by the key-value ( KV) cache.
Existing KV cache methods approach this problem by pruning or evicting large swaths of relatively less important KV pairs.
We propose LESS, a simple integration of a constant sized cache with eviction-based cache methods.
arXiv Detail & Related papers (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.