PixelCAM: Pixel Class Activation Mapping for Histology Image Classification and ROI Localization
- URL: http://arxiv.org/abs/2503.24135v1
- Date: Mon, 31 Mar 2025 14:18:01 GMT
- Title: PixelCAM: Pixel Class Activation Mapping for Histology Image Classification and ROI Localization
- Authors: Alexis Guichemerre, Soufiane Belharbi, Mohammadhadi Shateri, Luke McCaffrey, Eric Granger,
- Abstract summary: Weakly supervised object localization (WSOL) methods allow training models to classify images and localize ROIs.<n>Standard WSOL methods rely on class activation mapping (CAM) methods to produce spatial localization maps according to a single- or two-step strategy.<n>We propose PixelCAM, a cost-effective foreground/background pixel-wise classifier in the pixel-feature space that allows for spatial object localization.
- Score: 7.869923456842283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised object localization (WSOL) methods allow training models to classify images and localize ROIs. WSOL only requires low-cost image-class annotations yet provides a visually interpretable classifier, which is important in histology image analysis. Standard WSOL methods rely on class activation mapping (CAM) methods to produce spatial localization maps according to a single- or two-step strategy. While both strategies have made significant progress, they still face several limitations with histology images. Single-step methods can easily result in under- or over-activation due to the limited visual ROI saliency in histology images and the limited localization cues. They also face the well-known issue of asynchronous convergence between classification and localization tasks. The two-step approach is sub-optimal because it is tied to a frozen classifier, limiting the capacity for localization. Moreover, these methods also struggle when applied to out-of-distribution (OOD) datasets. In this paper, a multi-task approach for WSOL is introduced for simultaneous training of both tasks to address the asynchronous convergence problem. In particular, localization is performed in the pixel-feature space of an image encoder that is shared with classification. This allows learning discriminant features and accurate delineation of foreground/background regions to support ROI localization and image classification. We propose PixelCAM, a cost-effective foreground/background pixel-wise classifier in the pixel-feature space that allows for spatial object localization. PixelCAM is trained using pixel pseudo-labels collected from a pretrained WSOL model. Both image and pixel-wise classifiers are trained simultaneously using standard gradient descent. In addition, our pixel classifier can easily be integrated into CNN- and transformer-based architectures without any modifications.
Related papers
- TeD-Loc: Text Distillation for Weakly Supervised Object Localization [13.412674368913747]
TeD-Loc is an approach that distills knowledge from CLIP text embeddings into the model backbone and produces patch-level localization.<n>It improves Top-1 LOC accuracy over state-of-the-art models by about 5% on both CUB and ILSVRC datasets.
arXiv Detail & Related papers (2025-01-22T04:36:17Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - Spatial-Aware Token for Weakly Supervised Object Localization [137.0570026552845]
We propose a task-specific spatial-aware token to condition localization in a weakly supervised manner.
Experiments show that the proposed SAT achieves state-of-the-art performance on both CUB-200 and ImageNet, with 98.45% and 73.13% GT-known Loc.
arXiv Detail & Related papers (2023-03-18T15:38:17Z) - Background-aware Classification Activation Map for Weakly Supervised
Object Localization [14.646874544729426]
We propose a background-aware classification activation map (B-CAM) to simultaneously learn localization scores of both object and background.
Our B-CAM can be trained in end-to-end manner based on a proposed stagger classification loss.
Experiments show that our B-CAM outperforms one-stage WSOL methods on the CUB-200, OpenImages and VOC2012 datasets.
arXiv Detail & Related papers (2021-12-29T03:12:09Z) - Discriminative Region-based Multi-Label Zero-Shot Learning [145.0952336375342]
Multi-label zero-shot learning (ZSL) is a more realistic counter-part of standard single-label ZSL.
We propose an alternate approach towards region-based discriminability-preserving ZSL.
arXiv Detail & Related papers (2021-08-20T17:56:47Z) - Spatially Consistent Representation Learning [12.120041613482558]
We propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks.
We devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region.
On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements.
arXiv Detail & Related papers (2021-03-10T15:23:45Z) - Isometric Propagation Network for Generalized Zero-shot Learning [72.02404519815663]
A popular strategy is to learn a mapping between the semantic space of class attributes and the visual space of images based on the seen classes and their data.
We propose Isometric propagation Network (IPN), which learns to strengthen the relation between classes within each space and align the class dependency in the two spaces.
IPN achieves state-of-the-art performance on three popular Zero-shot learning benchmarks.
arXiv Detail & Related papers (2021-02-03T12:45:38Z) - Cross-Descriptor Visual Localization and Mapping [81.16435356103133]
Visual localization and mapping is the key technology underlying the majority of Mixed Reality and robotics systems.
We present three novel scenarios for localization and mapping which require the continuous update of feature representations.
Our data-driven approach is agnostic to the feature descriptor type, has low computational requirements, and scales linearly with the number of description algorithms.
arXiv Detail & Related papers (2020-12-02T18:19:51Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
Weakly supervised localization aims at finding target object regions using only image-level supervision.
We propose to leverage pixel-level similarities across different objects for learning more accurate object locations.
Our method achieves the Top-1 localization error rate of 45.17% on the ILSVRC validation set.
arXiv Detail & Related papers (2020-08-12T04:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.