Advances in Continual Graph Learning for Anti-Money Laundering Systems: A Comprehensive Review
- URL: http://arxiv.org/abs/2503.24259v1
- Date: Mon, 31 Mar 2025 16:06:47 GMT
- Title: Advances in Continual Graph Learning for Anti-Money Laundering Systems: A Comprehensive Review
- Authors: Bruno Deprez, Wei Wei, Wouter Verbeke, Bart Baesens, Kevin Mets, Tim Verdonck,
- Abstract summary: We critically evaluate state-of-the-art continual graph learning approaches for anti-money laundering applications.<n>Our analysis demonstrates that continual learning improves model robustness and adaptability in the face of extreme class imbalances and evolving fraud patterns.
- Score: 6.1141481450958315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial institutions are required by regulation to report suspicious financial transactions related to money laundering. Therefore, they need to constantly monitor vast amounts of incoming and outgoing transactions. A particular challenge in detecting money laundering is that money launderers continuously adapt their tactics to evade detection. Hence, detection methods need constant fine-tuning. Traditional machine learning models suffer from catastrophic forgetting when fine-tuning the model on new data, thereby limiting their effectiveness in dynamic environments. Continual learning methods may address this issue and enhance current anti-money laundering (AML) practices, by allowing models to incorporate new information while retaining prior knowledge. Research on continual graph learning for AML, however, is still scarce. In this review, we critically evaluate state-of-the-art continual graph learning approaches for AML applications. We categorise methods into replay-based, regularization-based, and architecture-based strategies within the graph neural network (GNN) framework, and we provide in-depth experimental evaluations on both synthetic and real-world AML data sets that showcase the effect of the different hyperparameters. Our analysis demonstrates that continual learning improves model adaptability and robustness in the face of extreme class imbalances and evolving fraud patterns. Finally, we outline key challenges and propose directions for future research.
Related papers
- Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions [51.43521977132062]
Money laundering is a financial crime that obscures the origin of illicit funds.<n>The proliferation of mobile payment platforms and smart IoT devices has significantly complicated anti-money laundering investigations.<n>This paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML.
arXiv Detail & Related papers (2025-03-13T05:19:44Z) - Deep Learning for Cross-Border Transaction Anomaly Detection in Anti-Money Laundering Systems [14.439233916969748]
This paper explores the application of unsupervised learning models in cross-border AML systems.<n>Five deep learning models, ranging from basic convolutional neural networks (CNNs) to hybrid CNNGRU architectures, were designed and tested.<n>The results demonstrate that as model complexity increases, so does the system's detection accuracy and responsiveness.
arXiv Detail & Related papers (2024-11-21T03:55:41Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraph is a novel self-supervised graph representation learning approach.
It provides insights to assist the anti-money laundering reviewing process.
To the best of our knowledge, this is the first fully self-supervised system within the context of AML detection.
arXiv Detail & Related papers (2022-10-25T21:58:02Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Anti-Money Laundering Alert Optimization Using Machine Learning with
Graphs [0.769672852567215]
Money laundering is a global problem that concerns legitimizing proceeds from serious felonies (1.7-4 trillion euros annually)
We propose a machine learning triage model, which complements the rule-based system and learns to predict the risk of an alert accurately.
We validate our model on a real-world banking dataset and show how the triage model can reduce the number of false positives by 80% while detecting over 90% of true positives.
arXiv Detail & Related papers (2021-12-14T16:12:30Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning.
Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.
We propose a general but easily-optimized robustness-regularized meta-learning framework, which allows the use of unlabeled data augmentation, fast adversarial attack generation, and computationally-light fine-tuning.
arXiv Detail & Related papers (2021-02-20T22:03:04Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
We study valuation models for algorithmic trading from the perspective of adversarial machine learning.
We introduce new attacks specific to this domain with size constraints that minimize attack costs.
We discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models.
arXiv Detail & Related papers (2020-02-21T22:04:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.