SQuat: Subspace-orthogonal KV Cache Quantization
- URL: http://arxiv.org/abs/2503.24358v1
- Date: Mon, 31 Mar 2025 17:37:32 GMT
- Title: SQuat: Subspace-orthogonal KV Cache Quantization
- Authors: Hao Wang, Ligong Han, Kai Xu, Akash Srivastava,
- Abstract summary: We introduce SQuat (Subspace-orthogonal KV cache quantization), which reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.<n>We show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
- Score: 19.131705063324883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
Related papers
- More for Keys, Less for Values: Adaptive KV Cache Quantization [59.708443710731146]
This paper introduces an information-aware quantization framework that adaptively compresses the key-value cache in large language models.<n>We show that key matrices consistently exhibit higher norm values and are more sensitive to quantization than value matrices.<n>We propose a mixed-precision quantization strategy, KV-AdaQuant, which allocates more bitwidth for keys and fewer for values.
arXiv Detail & Related papers (2025-02-20T22:24:27Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
In large language models (LLMs), the memory usage of KV cache has become a critical bottleneck during inference.
The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension separately.
In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression.
arXiv Detail & Related papers (2024-12-17T09:20:31Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - QJL: 1-Bit Quantized JL Transform for KV Cache Quantization with Zero Overhead [10.067037913589175]
Serving LLMs requires substantial memory due to the storage requirements of Key-Value embeddings in the KV cache.
Traditional quantization methods face significant memory overhead due to the need to store quantization constants.
We introduce QJL, a new quantization approach that consists of a Johnson-Lindenstrauss transform followed by sign-bit quantization.
arXiv Detail & Related papers (2024-06-05T17:42:05Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
Key-value( KV) caching is an important technique to accelerate the inference of large language models.
Existing methods often compromise precision or require extra data for calibration.
We introduce textbfDecoQuant, a novel data-free low-bit quantization technique based on tensor decomposition methods.
arXiv Detail & Related papers (2024-05-21T08:35:10Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
"Keyformer" is an innovative inference-time approach to mitigate the challenges associated with KV cache size and memory bandwidth utilization.
We evaluate Keyformer's performance across three foundational models: GPT-J, Cerebras-GPT, and MPT.
arXiv Detail & Related papers (2024-03-14T02:42:42Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMs are seeing growing use for applications which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference.
Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in sub-4-bit precision.
Our work, KVQuant, facilitates low precision KV cache quantization by incorporating several novel methods.
arXiv Detail & Related papers (2024-01-31T18:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.