Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead
- URL: http://arxiv.org/abs/2504.00294v1
- Date: Mon, 31 Mar 2025 23:40:28 GMT
- Title: Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead
- Authors: Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, Safoora Yousefi,
- Abstract summary: Inference-time scaling can enhance the reasoning capabilities of large language models.<n>We investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks.
- Score: 33.011660907969706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inference-time scaling can enhance the reasoning capabilities of large language models (LLMs) on complex problems that benefit from step-by-step problem solving. Although lengthening generated scratchpads has proven effective for mathematical tasks, the broader impact of this approach on other tasks remains less clear. In this work, we investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks, including math and STEM reasoning, calendar planning, NP-hard problems, navigation, and spatial reasoning. We compare conventional models (e.g., GPT-4o) with models fine-tuned for inference-time scaling (e.g., o1) through evaluation protocols that involve repeated model calls, either independently or sequentially with feedback. These evaluations approximate lower and upper performance bounds and potential for future performance improvements for each model, whether through enhanced training or multi-model inference systems. Our extensive empirical analysis reveals that the advantages of inference-time scaling vary across tasks and diminish as problem complexity increases. In addition, simply using more tokens does not necessarily translate to higher accuracy in these challenging regimes. Results from multiple independent runs with conventional models using perfect verifiers show that, for some tasks, these models can achieve performance close to the average performance of today's most advanced reasoning models. However, for other tasks, a significant performance gap remains, even in very high scaling regimes. Encouragingly, all models demonstrate significant gains when inference is further scaled with perfect verifiers or strong feedback, suggesting ample potential for future improvements.
Related papers
- Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.
We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.
For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - Teaching Large Language Models to Reason through Learning and Forgetting [23.384882158333156]
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems.
This approach significantly increases computational costs and inference time.
We propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths.
arXiv Detail & Related papers (2025-04-15T16:30:02Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
Recent studies have shown that making a model spend more time thinking through longer Chain of Thoughts (CoTs) enables it to gain significant improvements in complex reasoning tasks.<n>We explore whether scaling with longer CoTs can indeed impair the reasoning performance of Large Language Models (LLMs) in certain domains.
arXiv Detail & Related papers (2025-02-25T10:48:05Z) - Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities? [61.85289698610747]
We study whether o1-like large language models (LLMs) truly possess test-time scaling capabilities.
We find that longer CoTs of these o1-like models do not consistently enhance accuracy.
We propose Shortest Majority Vote, a method that combines parallel scaling strategies with CoT length characteristics.
arXiv Detail & Related papers (2025-02-17T07:21:11Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks.
scaling them to large graphs is challenging due to the high computational and storage costs.
We present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works.
arXiv Detail & Related papers (2024-12-19T07:48:14Z) - ConsistentFeature: A Plug-and-Play Component for Neural Network Regularization [0.32885740436059047]
Over- parameterized neural network models often lead to significant performance discrepancies between training and test sets.
We introduce a simple perspective on overfitting: models learn different representations in different i.i.d. datasets.
We propose an adaptive method, ConsistentFeature, that regularizes the model by constraining feature differences across random subsets of the same training set.
arXiv Detail & Related papers (2024-12-02T13:21:31Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.