Using complex prompts to identify fine-grained biases in image generation through ChatGPT-4o
- URL: http://arxiv.org/abs/2504.00388v1
- Date: Tue, 01 Apr 2025 03:17:35 GMT
- Title: Using complex prompts to identify fine-grained biases in image generation through ChatGPT-4o
- Authors: Marinus Ferreira,
- Abstract summary: Two dimensions of bias can be revealed through the study of large AI models.<n>Not only bias in training data or the products of an AI, but also bias in society.<n>I briefly discuss how we can use complex prompts to image generation AI to investigate either dimension of bias.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There are not one but two dimensions of bias that can be revealed through the study of large AI models: not only bias in training data or the products of an AI, but also bias in society, such as disparity in employment or health outcomes between different demographic groups. Often training data and AI output is biased for or against certain demographics (i.e. older white people are overrepresented in image datasets), but sometimes large AI models accurately illustrate biases in the real world (i.e. young black men being disproportionately viewed as threatening). These social disparities often appear in image generation AI outputs in the form of 'marked' features, where some feature of an individual or setting is a social marker of disparity, and prompts both humans and AI systems to treat subjects that are marked in this way as exceptional and requiring special treatment. Generative AI has proven to be very sensitive to such marked features, to the extent of over-emphasising them and thus often exacerbating social biases. I briefly discuss how we can use complex prompts to image generation AI to investigate either dimension of bias, emphasising how we can probe the large language models underlying image generation AI through, for example, automated sentiment analysis of the text prompts used to generate images.
Related papers
- Could AI Trace and Explain the Origins of AI-Generated Images and Text? [53.11173194293537]
AI-generated content is increasingly prevalent in the real world.
adversaries might exploit large multimodal models to create images that violate ethical or legal standards.
Paper reviewers may misuse large language models to generate reviews without genuine intellectual effort.
arXiv Detail & Related papers (2025-04-05T20:51:54Z) - Exploring Bias in over 100 Text-to-Image Generative Models [49.60774626839712]
We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face.<n>We assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate.<n>Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased.
arXiv Detail & Related papers (2025-03-11T03:40:44Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - Disability Representations: Finding Biases in Automatic Image Generation [0.0]
This study investigates the representation biases in popular image generation models towards people with disabilities (PWD)
The results indicate a significant bias, with most generated images portraying disabled individuals as old, sad, and predominantly using manual wheelchairs.
These findings highlight the urgent need for more inclusive AI development, ensuring diverse and accurate representation of PWD in generated images.
arXiv Detail & Related papers (2024-06-21T09:12:31Z) - Bias in Generative AI [2.5830293457323266]
This study analyzed images generated by three popular generative artificial intelligence (AI) tools to investigate potential bias in AI generators.
All three AI generators exhibited bias against women and African Americans.
Women were depicted as younger with more smiles and happiness, while men were depicted as older with more neutral expressions and anger.
arXiv Detail & Related papers (2024-03-05T07:34:41Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
We show that AI-generated images introduce an invisible relevance bias to text-image retrieval models.
The inclusion of AI-generated images in the training data of the retrieval models exacerbates the invisible relevance bias.
We propose an effective training method aimed at alleviating the invisible relevance bias.
arXiv Detail & Related papers (2023-11-23T16:22:58Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
This survey paper offers a succinct, comprehensive overview of fairness and bias in AI.
We review sources of bias, such as data, algorithm, and human decision biases.
We assess the societal impact of biased AI systems, focusing on the perpetuation of inequalities and the reinforcement of harmful stereotypes.
arXiv Detail & Related papers (2023-04-16T03:23:55Z) - Social Biases through the Text-to-Image Generation Lens [9.137275391251517]
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software.
We take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images.
We present findings for two popular T2I models: DALLE-v2 and Stable Diffusion.
arXiv Detail & Related papers (2023-03-30T05:29:13Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
We investigate the potential for machine learning models to amplify dangerous and complex stereotypes.
We find a broad range of ordinary prompts produce stereotypes, including prompts simply mentioning traits, descriptors, occupations, or objects.
arXiv Detail & Related papers (2022-11-07T18:31:07Z) - How well can Text-to-Image Generative Models understand Ethical Natural
Language Interventions? [67.97752431429865]
We study the effect on the diversity of the generated images when adding ethical intervention.
Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as 'irrespective of gender'
arXiv Detail & Related papers (2022-10-27T07:32:39Z) - Image Representations Learned With Unsupervised Pre-Training Contain
Human-like Biases [3.0349733976070015]
We develop a novel method for quantifying biased associations between representations of social concepts and attributes in images.
We find that state-of-the-art unsupervised models trained on ImageNet, a popular benchmark image dataset, automatically learn racial, gender, and intersectional biases.
arXiv Detail & Related papers (2020-10-28T15:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.