Making Large Language Models Better Reasoners with Orchestrated Streaming Experiences
- URL: http://arxiv.org/abs/2504.00473v1
- Date: Tue, 01 Apr 2025 07:04:04 GMT
- Title: Making Large Language Models Better Reasoners with Orchestrated Streaming Experiences
- Authors: Xiangyang Liu, Junliang He, Xipeng Qiu,
- Abstract summary: Large language models (LLMs) can perform complex reasoning by generating intermediate thoughts under zero-shot or few-shot settings.<n>We present RoSE, a framework for solving reasoning tasks that can self-improve without complex external efforts.
- Score: 57.892647106955415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) can perform complex reasoning by generating intermediate thoughts under zero-shot or few-shot settings. However, zero-shot prompting always encounters low performance, and the superior performance of few-shot prompting hinges on the manual-crafted demonstrations. In this paper, we present RoSE (Reasoning with Orchestrated Streaming Experiences), a general framework for solving reasoning tasks that can self-improve without complex external efforts. To enable RoSE, we describe an architecture that extends an LLM to store all answered questions and their thoughts in a streaming experience pool then orchestrates helpful questions from the pool to assist in answering new questions. To set up a question-aware orchestration mechanism, RoSE first calculates the similarity of each question in the pool with a new test question. Since the solution to each answered question is not always correct, RoSE will sort the questions according to their similarity with the new question, and then uniformly divide them into multiple buckets. It finally extracts one question from each bucket to make these extracted questions more diverse. To make these extracted questions help RoSE answer new questions as much as possible, we introduce two other attributes of uncertainty and complexity for each question. RoSE will preferentially select the questions with low uncertainty and high complexity from each bucket. We evaluate the versatility of RoSE in various reasoning tasks, LLMs, and CoT methods.
Related papers
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [92.57125498367907]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)<n>We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
We investigate the use of Multi-Embodied LLM Explorers (MELE) for question-answering in an unknown environment.
Multiple LLM-based agents independently explore and then answer queries about a household environment.
We analyze different aggregation methods to generate a single, final answer for each query.
arXiv Detail & Related papers (2024-06-16T12:46:40Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
We present Reasoning Question Prompts for VQA tasks, which can further activate the potential of Large Language Models.
We generate self-contained questions as reasoning question prompts via an unsupervised question edition module.
Each reasoning question prompt clearly indicates the intent of the original question.
Then, the candidate answers associated with their confidence scores acting as answer integritys are fed into LLMs.
arXiv Detail & Related papers (2023-11-15T15:40:46Z) - AGent: A Novel Pipeline for Automatically Creating Unanswerable
Questions [10.272000561545331]
We propose AGent, a novel pipeline that creates new unanswerable questions by re-matching a question with a context that lacks the necessary information for a correct answer.
In this paper, we demonstrate the usefulness of this AGent pipeline by creating two sets of unanswerable questions from answerable questions in SQuAD and HotpotQA.
arXiv Detail & Related papers (2023-09-10T18:13:11Z) - Reasoning over Hierarchical Question Decomposition Tree for Explainable
Question Answering [83.74210749046551]
We propose to leverage question decomposing for heterogeneous knowledge integration.
We propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT)
Experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly.
arXiv Detail & Related papers (2023-05-24T11:45:59Z) - Federated Prompting and Chain-of-Thought Reasoning for Improving LLMs
Answering [13.735277588793997]
We investigate how to enhance answer precision in frequently asked questions posed by distributed users using cloud-based Large Language Models (LLMs)
Our study focuses on a typical situations where users ask similar queries that involve identical mathematical reasoning steps and problem-solving procedures.
We propose to improve the distributed synonymous questions using Self-Consistency (SC) and Chain-of-Thought (CoT) techniques.
arXiv Detail & Related papers (2023-04-27T01:48:03Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting.
We introduce Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution.
Our best model (with successive prompting) achieves an improvement of 5% absolute F1 on a few-shot version of the DROP dataset.
arXiv Detail & Related papers (2022-12-08T06:03:38Z) - Co-VQA : Answering by Interactive Sub Question Sequence [18.476819557695087]
This paper proposes a conversation-based VQA framework, which consists of three components: Questioner, Oracle, and Answerer.
To perform supervised learning for each model, we introduce a well-designed method to build a SQS for each question on VQA 2.0 and VQA-CP v2 datasets.
arXiv Detail & Related papers (2022-04-02T15:09:16Z) - MultiModalQA: Complex Question Answering over Text, Tables and Images [52.25399438133274]
We present MultiModalQA: a dataset that requires joint reasoning over text, tables and images.
We create MMQA using a new framework for generating complex multi-modal questions at scale.
We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions.
arXiv Detail & Related papers (2021-04-13T09:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.