Learned Image Compression with Dictionary-based Entropy Model
- URL: http://arxiv.org/abs/2504.00496v1
- Date: Tue, 01 Apr 2025 07:43:10 GMT
- Title: Learned Image Compression with Dictionary-based Entropy Model
- Authors: Jingbo Lu, Leheng Zhang, Xingyu Zhou, Mu Li, Wen Li, Shuhang Gu,
- Abstract summary: Entropy model plays a key role in learned image compression.<n>Most existing methods employed hyper-prior and auto-regressive architectures to form their entropy models.<n>We propose a novel entropy model named Dictionary-based Cross Attention Entropy model.
- Score: 32.966391277632646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learned image compression methods have attracted great research interest and exhibited superior rate-distortion performance to the best classical image compression standards of the present. The entropy model plays a key role in learned image compression, which estimates the probability distribution of the latent representation for further entropy coding. Most existing methods employed hyper-prior and auto-regressive architectures to form their entropy models. However, they only aimed to explore the internal dependencies of latent representation while neglecting the importance of extracting prior from training data. In this work, we propose a novel entropy model named Dictionary-based Cross Attention Entropy model, which introduces a learnable dictionary to summarize the typical structures occurring in the training dataset to enhance the entropy model. Extensive experimental results have demonstrated that the proposed model strikes a better balance between performance and latency, achieving state-of-the-art results on various benchmark datasets.
Related papers
- Entropy-Based Block Pruning for Efficient Large Language Models [81.18339597023187]
We propose an entropy-based pruning strategy to enhance efficiency while maintaining performance.
Empirical analysis reveals that the entropy of hidden representations decreases in the early blocks but progressively increases across most subsequent blocks.
arXiv Detail & Related papers (2025-04-04T03:42:34Z) - An Information-Theoretic Regularizer for Lossy Neural Image Compression [20.939331919455935]
Lossy image compression networks aim to minimize the latent entropy of images while adhering to specific distortion constraints.<n>We propose a novel structural regularization method for the neural image compression task by incorporating the negative conditional source entropy into the training objective.
arXiv Detail & Related papers (2024-11-23T05:19:27Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Entroformer: A Transformer-based Entropy Model for Learned Image
Compression [17.51693464943102]
We propose a novel transformer-based entropy model, termed Entroformer, to capture long-range dependencies in probability distribution estimation.
The experiments show that the Entroformer achieves state-of-the-art performance on image compression while being time-efficient.
arXiv Detail & Related papers (2022-02-11T08:03:31Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
We study two popular model compression techniques including knowledge distillation and pruning.
We show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets.
We develop a regularization strategy for model compression based on sample uncertainty.
arXiv Detail & Related papers (2021-10-16T00:20:04Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Learning Accurate Entropy Model with Global Reference for Image
Compression [22.171750277528222]
We propose a novel Global Reference Model for image compression to leverage both the local and the global context information.
A by-product of this work is the innovation of a mean-shifting GDN module that further improves the performance.
arXiv Detail & Related papers (2020-10-16T11:27:46Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
In this paper, we propose a non-local operation for context modeling by employing the global similarity within the context.
The entropy model is further adopted as the rate loss in a joint rate-distortion optimization.
Considering that the width of the transforms is essential in training low distortion models, we finally produce a U-Net block in the transforms to increase the width with manageable memory consumption and time complexity.
arXiv Detail & Related papers (2020-05-10T13:28:18Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.