Lower Bounds for Leader Election and Collective Coin Flipping, Revisited
- URL: http://arxiv.org/abs/2504.01856v1
- Date: Wed, 02 Apr 2025 16:08:39 GMT
- Title: Lower Bounds for Leader Election and Collective Coin Flipping, Revisited
- Authors: Eshan Chattopadhyay, Mohit Gurumukhani, Noam Ringach, Rocco Servedio,
- Abstract summary: We show that any $k$-round coin flipping protocol can be biased by $O(ell/log(k)(ell))$ bad players.<n>We also derive lower bounds for protocols allowing multi-bit messages per round.
- Score: 0.47998222538650526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the tasks of collective coin flipping and leader election in the full-information model. We prove new lower bounds for coin flipping protocols, implying lower bounds for leader election protocols. We show that any $k$-round coin flipping protocol, where each of $\ell$ players sends 1 bit per round, can be biased by $O(\ell/\log^{(k)}(\ell))$ bad players. For all $k>1$ this strengthens previous lower bounds [RSZ, SICOMP 2002], which ruled out protocols resilient to adversaries controlling $O(\ell/\log^{(2k-1)}(\ell))$ players. Consequently, we establish that any protocol tolerating a linear fraction of corrupt players, with only 1 bit per round, must run for at least $\log^*\ell-O(1)$ rounds, improving on the prior best lower bound of $\frac12 \log^*\ell-\log^*\log^*\ell$. This lower bound matches the number of rounds, $\log^*\ell$, taken by the current best coin flipping protocols from [RZ, JCSS 2001], [F, FOCS 1999] that can handle a linear sized coalition of bad players, but with players sending unlimited bits per round. We also derive lower bounds for protocols allowing multi-bit messages per round. Our results show that the protocols from [RZ, JCSS 2001], [F, FOCS 1999] that handle a linear number of corrupt players are almost optimal in terms of round complexity and communication per player in a round. A key technical ingredient in proving our lower bounds is a new result regarding biasing most functions from a family of functions using a common set of bad players and a small specialized set of bad players specific to each function that is biased. We give improved constant-round coin flipping protocols in the setting that each player can send 1 bit per round. For two rounds, our protocol can handle $O(\ell/(\log\ell)(\log\log\ell)^2)$ sized coalition of bad players; better than the best one-round protocol by [AL, Combinatorica 1993] in this setting.
Related papers
- Instance-Dependent Regret Bounds for Learning Two-Player Zero-Sum Games with Bandit Feedback [60.610120215789976]
We show that when a pure strategy Nash equilibrium exists, $c$ becomes zero, leading to an optimal instance-dependent regret bound.
Our algorithm also enjoys last-iterate convergence and can identify the pure strategy Nash equilibrium with near-optimal sample.
arXiv Detail & Related papers (2025-02-24T20:20:06Z) - Best of Both Worlds: Regret Minimization versus Minimax Play [57.68976579579758]
We show that our results allow us to guarantee to risk at most $O(1)$ loss while being able to gain $Omega(T)$ from exploitable opponents.
arXiv Detail & Related papers (2025-02-17T11:04:01Z) - Corrupted Learning Dynamics in Games [62.73758165845971]
An equilibrium can be computed at a fast rate of $O(log T)$ when all players follow the optimistic follow-the-regularized-leader (OFTRL)<n>We present corrupted learning dynamics that adaptively find an equilibrium at a rate that depends on the extent to which each player deviates from the strategy suggested by the prescribed algorithm.
arXiv Detail & Related papers (2024-12-10T02:23:44Z) - Asynchronous Approximate Agreement with Quadratic Communication [23.27199615640474]
We consider an asynchronous network of $n$ message-sending parties, up to $t$ of which are byzantine.
We study approximate agreement, where the parties obtain approximately equal outputs in the convex hull of their inputs.
This takes $Theta(n2)$ messages per reliable broadcast, or $Theta(n3)$ messages per iteration.
arXiv Detail & Related papers (2024-08-10T09:03:06Z) - Nearly-Optimal Consensus Tolerating Adaptive Omissions: Why is a Lot of Randomness Needed? [4.465134753953128]
We study the problem of reaching agreement in a synchronous distributed system by $n$ autonomous parties, when the communication links from/to faulty parties can omit messages.
We design a randomized algorithm that works in $O(sqrtnlog2 n)$ rounds and sends $O(n2log3 n)$ communication bits.
We prove that no MC algorithm can work in less than $Omega(fracn2maxR,nlog n)$ rounds if it uses less than $O(R)$ calls to
arXiv Detail & Related papers (2024-05-08T02:17:10Z) - Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages [63.366380571397]
We study the problem of private vector mean estimation in the shuffle model of privacy where $n$ users each have a unit vector $v(i) inmathbbRd$.
We propose a new multi-message protocol that achieves the optimal error using $tildemathcalOleft(min(nvarepsilon2,d)right)$ messages per user.
arXiv Detail & Related papers (2024-04-16T00:56:36Z) - Tight Bounds for the Randomized and Quantum Communication Complexities
of Equality with Small Error [1.6522364074260811]
We investigate the randomized and quantum communication complexities of the Equality function with small error probability $epsilon$.
We show that any $log(n/epsilon)-loglog(sqrtn/epsilon)+3$ protocol communicates at least $log(n/epsilon)-log(sqrtn/epsilon)-O(1)$ qubits.
arXiv Detail & Related papers (2021-07-25T13:52:42Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - A Tight Lower Bound on Adaptively Secure Full-Information Coin Flip [2.469280630208887]
In a coin-flipping protocol, a computationally adversary can choose which parties to corrupt along the protocol execution.
We prove that no $n$-party protocol (of any round complexity) is resilient to $omega(sqrtn)$ corruptions.
arXiv Detail & Related papers (2020-05-04T15:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.