Graphically Speaking: Unmasking Abuse in Social Media with Conversation Insights
- URL: http://arxiv.org/abs/2504.01902v1
- Date: Wed, 02 Apr 2025 17:03:37 GMT
- Title: Graphically Speaking: Unmasking Abuse in Social Media with Conversation Insights
- Authors: Célia Nouri, Jean-Philippe Cointet, Chloé Clavel,
- Abstract summary: Abusive language in social media conversations depends on the conversational context, characterized by the content and topology of preceding comments.<n>Traditional Abusive Language Detection models often overlook this context, which can lead to unreliable performance metrics.<n>Recent Natural Language Processing (NLP) methods that integrate conversational context often depend on limited and simplified representations, and report inconsistent results.<n>We propose a novel approach that utilize graph neural networks (GNNs) to model social media conversations as graphs, where nodes represent comments, and edges capture reply structures.
- Score: 10.188075925271471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting abusive language in social media conversations poses significant challenges, as identifying abusiveness often depends on the conversational context, characterized by the content and topology of preceding comments. Traditional Abusive Language Detection (ALD) models often overlook this context, which can lead to unreliable performance metrics. Recent Natural Language Processing (NLP) methods that integrate conversational context often depend on limited and simplified representations, and report inconsistent results. In this paper, we propose a novel approach that utilize graph neural networks (GNNs) to model social media conversations as graphs, where nodes represent comments, and edges capture reply structures. We systematically investigate various graph representations and context windows to identify the optimal configuration for ALD. Our GNN model outperform both context-agnostic baselines and linear context-aware methods, achieving significant improvements in F1 scores. These findings demonstrate the critical role of structured conversational context and establish GNNs as a robust framework for advancing context-aware abusive language detection.
Related papers
- PICASO: Permutation-Invariant Context Composition with State Space Models [98.91198288025117]
State Space Models (SSMs) offer a promising solution by allowing a database of contexts to be mapped onto fixed-dimensional states.<n>We propose a simple mathematical relation derived from SSM dynamics to compose multiple states into one that efficiently approximates the effect of concatenating raw context tokens.<n>We evaluate our resulting method on WikiText and MSMARCO in both zero-shot and fine-tuned settings, and show that we can match the strongest performing baseline while enjoying on average 5.4x speedup.
arXiv Detail & Related papers (2025-02-24T19:48:00Z) - Advanced Text Analytics -- Graph Neural Network for Fake News Detection in Social Media [0.0]
Advanced Text Analysis Graph Neural Network (ATA-GNN) is proposed in this paper.<n>ATA-GNN employs innovative topic modelling (clustering) techniques to identify typical words for each topic.<n>Extensive evaluations on widely used benchmark datasets demonstrate that ATA-GNN surpasses the performance of current GNN-based FND methods.
arXiv Detail & Related papers (2025-02-22T09:17:33Z) - Effective Context Modeling Framework for Emotion Recognition in Conversations [2.7175580940471913]
Emotion Recognition in Conversations (ERC) facilitates a deeper understanding of the emotions conveyed by speakers in each utterance within a conversation.<n>Recent Graph Neural Networks (GNNs) have demonstrated their strengths in capturing data relationships.<n>We propose ConxGNN, a novel GNN-based framework designed to capture contextual information in conversations.
arXiv Detail & Related papers (2024-12-21T02:22:06Z) - Scalable Frame-based Construction of Sociocultural NormBases for Socially-Aware Dialogues [66.69453609603875]
Sociocultural norms serve as guiding principles for personal conduct in social interactions.
We propose a scalable approach for constructing a Sociocultural Norm (SCN) Base using Large Language Models (LLMs)
We construct a comprehensive and publicly accessible Chinese Sociocultural NormBase.
arXiv Detail & Related papers (2024-10-04T00:08:46Z) - Knowledge-Aware Conversation Derailment Forecasting Using Graph Convolutional Networks [5.571668670990489]
We derive commonsense statements from a knowledge base of dialogue contextual information to enrich a graph neural network classification architecture.
We fuse the multi-source information on utterance into capsules, which are used by a transformer-based forecaster to predict conversation derailment.
Our model captures conversation dynamics and context propagation, outperforming the state-of-the-art models on the CGA and CMV benchmark datasets.
arXiv Detail & Related papers (2024-08-24T02:40:28Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Color Overmodification Emerges from Data-Driven Learning and Pragmatic
Reasoning [53.088796874029974]
We show that speakers' referential expressions depart from communicative ideals in ways that help illuminate the nature of pragmatic language use.
By adopting neural networks as learning agents, we show that overmodification is more likely with environmental features that are infrequent or salient.
arXiv Detail & Related papers (2022-05-18T18:42:43Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
proper handling of discourse significantly contributes to the quality of machine translation (MT)
Recent works in context-aware MT attempt to target a small set of discourse phenomena during evaluation.
We develop the Multilingual Discourse-Aware benchmark, a series of taggers that identify and evaluate model performance on discourse phenomena.
arXiv Detail & Related papers (2021-09-15T17:29:30Z) - Contextual Biasing of Language Models for Speech Recognition in
Goal-Oriented Conversational Agents [11.193867567895353]
Goal-oriented conversational interfaces are designed to accomplish specific tasks.
We propose a new architecture that utilizes context embeddings derived from BERT on sample utterances provided during inference time.
Our experiments show a word error rate (WER) relative reduction of 7% over non-contextual utterance-level NLM rescorers on goal-oriented audio datasets.
arXiv Detail & Related papers (2021-03-18T15:38:08Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - ORD: Object Relationship Discovery for Visual Dialogue Generation [60.471670447176656]
We propose an object relationship discovery (ORD) framework to preserve the object interactions for visual dialogue generation.
A hierarchical graph convolutional network (HierGCN) is proposed to retain the object nodes and neighbour relationships locally, and then refines the object-object connections globally.
Experiments have proved that the proposed method can significantly improve the quality of dialogue by utilising the contextual information of visual relationships.
arXiv Detail & Related papers (2020-06-15T12:25:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.