Differentiable Optimization for Deep Learning-Enhanced DC Approximation of AC Optimal Power Flow
- URL: http://arxiv.org/abs/2504.01970v1
- Date: Sat, 22 Mar 2025 20:53:53 GMT
- Title: Differentiable Optimization for Deep Learning-Enhanced DC Approximation of AC Optimal Power Flow
- Authors: Andrew Rosemberg, Michael Klamkin,
- Abstract summary: We propose a novel deep learning-based framework for network equivalency that enhances DC-OPF to more closely mimic the behavior of AC-OPF.<n>The approach utilizes recent advances in differentiable optimization, incorporating a neural network trained to predict adjusted nodal shunt conductances and branch susceptances.<n>Results demonstrate the framework's ability to significantly improve prediction accuracy, paving the way for more reliable and efficient power systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing scale of power systems and the increasing uncertainty introduced by renewable energy sources necessitates novel optimization techniques that are significantly faster and more accurate than existing methods. The AC Optimal Power Flow (AC-OPF) problem, a core component of power grid optimization, is often approximated using linearized DC Optimal Power Flow (DC-OPF) models for computational tractability, albeit at the cost of suboptimal and inefficient decisions. To address these limitations, we propose a novel deep learning-based framework for network equivalency that enhances DC-OPF to more closely mimic the behavior of AC-OPF. The approach utilizes recent advances in differentiable optimization, incorporating a neural network trained to predict adjusted nodal shunt conductances and branch susceptances in order to account for nonlinear power flow behavior. The model can be trained end-to-end using modern deep learning frameworks by leveraging the implicit function theorem. Results demonstrate the framework's ability to significantly improve prediction accuracy, paving the way for more reliable and efficient power systems.
Related papers
- Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow [0.0]
AC optimal power flow (AC-OPF) problem is essential for power system operations.<n>In this paper, we introduce a novel neural-based approach that merges simplicity and interpretability.
arXiv Detail & Related papers (2024-07-30T14:38:43Z) - QCQP-Net: Reliably Learning Feasible Alternating Current Optimal Power
Flow Solutions Under Constraints [4.1920378271058425]
We propose an innovated computational learning ACOPF, where the input is mapped to the ACOPF network in a computationally efficient manner.
We show through simulations that our proposed method achieves superior feasibility rate and cost in situations where the existing-based approaches fail.
arXiv Detail & Related papers (2024-01-11T20:17:44Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow [4.27638925658716]
Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.
Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.
We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
arXiv Detail & Related papers (2022-12-23T17:00:00Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - Model-Informed Generative Adversarial Network (MI-GAN) for Learning
Optimal Power Flow [5.407198609685119]
The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of renewable energy brought to the power system.
Deep learning techniques, such as neural networks, have recently been developed to improve computational efficiency in solving OPF problems with the utilization of data.
In this paper, we propose an optimization model-informed generative adversarial network (MI-GAN) framework to solve OPF under uncertainty.
arXiv Detail & Related papers (2022-06-04T00:37:37Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.