Base Station Certificate and Multi-Factor Authentication for Cellular Radio Control Communication Security
- URL: http://arxiv.org/abs/2504.02133v1
- Date: Wed, 02 Apr 2025 21:12:29 GMT
- Title: Base Station Certificate and Multi-Factor Authentication for Cellular Radio Control Communication Security
- Authors: Sourav Purification, Simeon Wuthier, Jinoh Kim, Ikkyun Kim, Sang-Yoon Chang,
- Abstract summary: Current cellular networking remains vulnerable to malicious fake base stations.<n>We design a base station certificate (certifying the base station's public key and location) and a multi-factor authentication to secure the authenticity and message integrity of the base station control communications.
- Score: 1.3142127084199051
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current cellular networking remains vulnerable to malicious fake base stations due to the lack of base station authentication mechanism or even a key to enable authentication. We design and build a base station certificate (certifying the base station's public key and location) and a multi-factor authentication (making use of the certificate and the information transmitted in the online radio control communications) to secure the authenticity and message integrity of the base station control communications. We advance beyond the state-of-the-art research by introducing greater authentication factors (and analyzing their individual security properties and benefits), and by using blockchain to deliver the base station digital certificate offline (enabling greater key length or security strength and computational or networking efficiency). We design the certificate construction, delivery, and the multi-factor authentication use on the user equipment. The user verification involves multiple factors verified through the ledger database, the location sensing (GPS in our implementation), and the cryptographic signature verification of the cellular control communication (SIB1 broadcasting). We analyze our scheme's security, performance, and the fit to the existing standardized networking protocols. Our work involves the implementation of building on X.509 certificate (adapted), smart contract-based blockchain, 5G-standardized RRC control communications, and software-defined radios. Our analyses show that our scheme effectively defends against more security threats and can enable stronger security, i.e., ECDSA with greater key lengths. Furthermore, our scheme enables computing and energy to be more than three times efficient than the previous research on the mobile user equipment.
Related papers
- Blockchain-based Trust Management in Security Credential Management System for Vehicular Network [6.772249211312723]
We build a vehicular-Based Trust Management (BBTM) to provide greater decentralization and security.
BBTM uses the blockchain to replace the existing Policy Generator (PG), manage the policy of each authority in SCMS, and aggregate the Global Certificate Chain File (GCCF)
Our experiments show that BBTM is lightweight in processing, efficient management in the certificate chain and ledger size, supports a bandwidth of multiple transactions per second, and provides validated end-entities.
arXiv Detail & Related papers (2025-02-21T18:22:28Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Quantum Authenticated Key Expansion with Key Recycling [1.274819629555637]
We present a quantum authentication key expansion protocol that integrates both authentication and key expansion within a single protocol.
We analyse the security of the protocol in a QAKE framework adapted from a classical authentication key exchange framework.
arXiv Detail & Related papers (2024-09-25T01:29:13Z) - DID Link: Authentication in TLS with Decentralized Identifiers and Verifiable Credentials [0.0]
This article presents DID Link, a novel authentication scheme for TLS 1.3.<n>It empowers entities to authenticate in a TLS-compliant way with self-issued X.509 certificates that are equipped with ledger-anchored DIDs.<n>A prototypical implementation shows comparable TLS handshake durations of DID Link if verification material is cached and reasonable prolongations if it is obtained from a ledger.
arXiv Detail & Related papers (2024-05-13T08:03:32Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
This paper proposes a novel approach based on Zero Trust Architecture (ZTA) extended with blockchain to further enhance security.
The blockchain component serves as an immutable database for storing users' requests and is used to verify trustworthiness by analyzing and identifying potentially malicious user activities.
We discuss the framework, processes of the approach, and the experiments carried out on a testbed to validate its feasibility and applicability in the smart city context.
arXiv Detail & Related papers (2023-11-28T12:43:21Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP) is an improvement of the Push-Button configuration (PBC) standard.
TEP relies on the Tamper-Evident Announcement (TEA), which guarantees that an adversary can neither tamper a transmitted message without being detected, nor hide the fact that the message has been sent.
This paper provides a comprehensive overview of the TEP protocol, including all information needed to understand how it works.
arXiv Detail & Related papers (2023-11-24T18:54:00Z) - Establishing Dynamic Secure Sessions for ECQV Implicit Certificates in Embedded Systems [0.0]
We present a design that utilizes the Station to Station (STS) protocol with implicit certificates.
We show that with a slight computational increase of 20% compared to a static ECDSA key derivation, we are able to mitigate many session-related security vulnerabilities.
arXiv Detail & Related papers (2023-11-19T22:40:21Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Secure access system using signature verification over tablet PC [62.21072852729544]
We describe a highly versatile and scalable prototype for Web-based secure access using signature verification.
The proposed architecture can be easily extended to work with different kinds of sensors and large-scale databases.
arXiv Detail & Related papers (2023-01-11T11:05:47Z) - Task-Oriented Communications for NextG: End-to-End Deep Learning and AI
Security Aspects [78.84264189471936]
NextG communication systems are beginning to explore shifting this design paradigm to reliably executing a given task such as in task-oriented communications.
Wireless signal classification is considered as the task for the NextG Radio Access Network (RAN), where edge devices collect wireless signals for spectrum awareness and communicate with the NextG base station (gNodeB) that needs to identify the signal label.
Task-oriented communications is considered by jointly training the transmitter, receiver and classifier functionalities as an encoder-decoder pair for the edge device and the gNodeB.
arXiv Detail & Related papers (2022-12-19T17:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.