Photon-number-resolving single-photon detector with a system detection efficiency of 98% and photon-number resolution of 32
- URL: http://arxiv.org/abs/2504.02202v1
- Date: Thu, 03 Apr 2025 01:15:49 GMT
- Title: Photon-number-resolving single-photon detector with a system detection efficiency of 98% and photon-number resolution of 32
- Authors: Chaomeng Ding, Xingyu Zhang, Jiamin Xiong, You Xiao, Tianzhu Zhang, Jia Huang, Hongxin Xu, Xiaoyu Liu, Lixing You, Zhen Wang, Hao Li,
- Abstract summary: Single-photon system detection efficiency (SDE) of 98% at a dark count rate of 20 cps.<n> detector operates at a high count rate of 41 MHz at 3dB-SDE, with a low timing jitter of as low as 40 ps.
- Score: 28.64849638882728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiently distinguishing photon numbers is a crucial yet challenging technology for various quantum information and quantum metrology applications. While superconducting transition edge sensors offer good photon-number-resolving (PNR) capabilities, they are hampered by low detection speed, timing jitter, and complex cooling and readout requirements. In this work, we present a significant advancement toward achieving high-fidelity PNR single-photon detectors. The unique twin-layer configuration of superconducting nanowire atop a dielectric mirror ensures the near-unity detection efficiency. The segmented design enables spatial multiplexing, establishing a mapping relationship between pulse amplitude and registered photons. The fabricated detector exhibits impressive performance metrics, including a single-photon system detection efficiency (SDE) of ~ 98% at a dark count rate of 20 cps and photon-number resolution capability up to 32. Further characterization through detector tomography reveals high fidelities for two-, three-, and four-photon events, approximately 87%,73%, and 40% respectively. Moreover, the detector operates at a high count rate of 41 MHz at 3dB-SDE, with a low timing jitter of as low as 40 ps. With its near-unity efficiency, high photon-number resolution, low dark count rate and fast detection speed, we expect significant interest in these detectors, promising substantial benefits for weak light detection and optical quantum information applications.
Related papers
- Kinetic Inductance and Jitter Dependence of the Intrinsic Photon Number Resolution in Superconducting Nanowire Single-Photon Detectors [0.0]
superconducting nanowire single-photon detectors (SNSPDs) offer superior efficiency, speed, noise reduction, and timing precision.
Photon-number discrimination remains constrained by the nanowire's electrical properties and readout jitter.
Lower jitter as well as increased kinetic inductance enhances the pulse separation for different photon numbers and improves the PNR capability.
arXiv Detail & Related papers (2024-10-30T16:16:11Z) - Enhanced Detection Rate and High Photon-Number Efficiencies with a Scalable Parallel SNSPD [0.0]
We report a 28-pixel superconducting nanowire single-photon detector with a dedicated parallel architecture.<n>The device shows a maximum single-photon efficiency of 88% and is able to maintain its efficiency above 50%.<n>The detector also provides state-of-the-art photon-number-resolving performances with a 2-photon efficiency of 75% and a 3-photon efficiency of 62%.
arXiv Detail & Related papers (2024-06-21T17:10:09Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - GHz detection rates and dynamic photon-number resolution with
superconducting nanowire arrays [0.0]
Superconducting-nanowire single-photon detectors (SNSPDs) have enabled the realization of several quantum optics technologies.
We report the fabrication of an SNSPD array composed of 14 independent pixels, achieving a system detection efficiency (SDE) of 90% in the telecom band.
We show 2-photon and 3-photon fidelities of 74% and 57% respectively, which represent state-of-the-art results for fiber-coupled SNSPDs.
arXiv Detail & Related papers (2023-03-30T14:16:59Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-efficiency and fast photon-number resolving parallel
superconducting nanowire single-photon detector [0.0]
Single-photon detectors are an enabling technology in many areas such as photonic quantum computing, non-classical light source characterisation and quantum imaging.
Here, we demonstrate high-efficiency PNR detectors using a parallel superconducting nanowire single-photon detector (P-SNSPD) architecture that does not suffer from crosstalk between the pixels and that is free of latching.
arXiv Detail & Related papers (2022-07-29T08:15:46Z) - Photon detection probability prediction using one-dimensional generative
neural network [62.997667081978825]
We propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer.
This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation.
This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
arXiv Detail & Related papers (2021-09-11T01:43:12Z) - Detecting Infrared Single Photons with Near-Unity System Detection
Efficiency [0.0]
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing.
We show novel superconducting nanowire single photon detectors fabricated on membranes with 94-99.5 (plus minus 2.07%) system detection efficiency.
We discuss the prime challenges in optical design, device fabrication as well as accurate and reliable detection efficiency measurements to achieve high performance single-photon detection.
arXiv Detail & Related papers (2020-11-17T20:56:39Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.