Learning Geometrically-Informed Lyapunov Functions with Deep Diffeomorphic RBF Networks
- URL: http://arxiv.org/abs/2504.02607v1
- Date: Thu, 03 Apr 2025 14:09:17 GMT
- Title: Learning Geometrically-Informed Lyapunov Functions with Deep Diffeomorphic RBF Networks
- Authors: Samuel Tesfazgi, Leonhard Sprandl, Sandra Hirche,
- Abstract summary: We propose a diffeomorphic function learning framework for learning certificate functions from data.<n>We introduce a novel approach to construct diffeomorphic maps based on RBF networks.<n>We demonstrate our approach by learning diffeomorphic Lyapunov functions from real-world data.
- Score: 3.0839725524711774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical deployment of learning-based autonomous systems would greatly benefit from tools that flexibly obtain safety guarantees in the form of certificate functions from data. While the geometrical properties of such certificate functions are well understood, synthesizing them using machine learning techniques still remains a challenge. To mitigate this issue, we propose a diffeomorphic function learning framework where prior structural knowledge of the desired output is encoded in the geometry of a simple surrogate function, which is subsequently augmented through an expressive, topology-preserving state-space transformation. Thereby, we achieve an indirect function approximation framework that is guaranteed to remain in the desired hypothesis space. To this end, we introduce a novel approach to construct diffeomorphic maps based on RBF networks, which facilitate precise, local transformations around data. Finally, we demonstrate our approach by learning diffeomorphic Lyapunov functions from real-world data and apply our method to different attractor systems.
Related papers
- Interpretable deformable image registration: A geometric deep learning perspective [9.13809412085203]
We present a theoretical foundation for designing an interpretable registration framework.<n>We formulate an end-to-end process that refines transformations in a coarse-to-fine fashion.<n>We conclude by showing significant improvement in performance metrics over state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-17T19:47:10Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Genetic Programming for Manifold Learning: Preserving Local Topology [5.226724669049025]
We propose a new approach to using genetic programming for manifold learning, which preserves local topology.
This is expected to significantly improve performance on tasks where local neighbourhood structure (topology) is paramount.
arXiv Detail & Related papers (2021-08-23T03:48:48Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
This contribution proposes a novel approach that interprets machine-learning models through the lens of feature space transformations.
It can be used to enhance unconditional as well as conditional post-hoc diagnostic tools.
A case study on remote-sensing landcover classification with 46 features is used to demonstrate the potential of the proposed approach.
arXiv Detail & Related papers (2021-04-09T10:48:11Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - A Functional Perspective on Learning Symmetric Functions with Neural
Networks [48.80300074254758]
We study the learning and representation of neural networks defined on measures.
We establish approximation and generalization bounds under different choices of regularization.
The resulting models can be learned efficiently and enjoy generalization guarantees that extend across input sizes.
arXiv Detail & Related papers (2020-08-16T16:34:33Z) - Extendable and invertible manifold learning with geometry regularized
autoencoders [9.742277703732187]
A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data.
Common approaches to this task use kernel methods for manifold learning.
We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder.
arXiv Detail & Related papers (2020-07-14T15:59:10Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.