GPTQv2: Efficient Finetuning-Free Quantization for Asymmetric Calibration
- URL: http://arxiv.org/abs/2504.02692v2
- Date: Fri, 04 Apr 2025 11:31:54 GMT
- Title: GPTQv2: Efficient Finetuning-Free Quantization for Asymmetric Calibration
- Authors: Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, Priyadarshini Panda,
- Abstract summary: GPTQv2 is a finetuning-free quantization method for compressing large-scale transformer architectures.<n>On a single GPU, we quantize a 405B language transformer and EVA-02 the rank first vision transformer that achieves 90% pretraining Imagenet accuracy.
- Score: 21.474315621757594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce GPTQv2, a novel finetuning-free quantization method for compressing large-scale transformer architectures. Unlike the previous GPTQ method, which independently calibrates each layer, we always match the quantized layer's output to the exact output in the full-precision model, resulting in a scheme that we call asymmetric calibration. Such a scheme can effectively reduce the quantization error accumulated in previous layers. We analyze this problem using optimal brain compression to derive a close-formed solution. The new solution explicitly minimizes the quantization error as well as the accumulated asymmetry error. Furthermore, we utilize various techniques to parallelize the solution calculation, including channel parallelization, neuron decomposition, and Cholesky reformulation for matrix fusion. As a result, GPTQv2 is easy to implement, simply using 20 more lines of code than GPTQ but improving its performance under low-bit quantization. Remarkably, on a single GPU, we quantize a 405B language transformer as well as EVA-02 the rank first vision transformer that achieves 90% pretraining Imagenet accuracy. Code is available at github.com/Intelligent-Computing-Lab-Yale/GPTQv2.
Related papers
- PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization.<n>We propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time.<n>Experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization.
arXiv Detail & Related papers (2025-02-18T08:04:58Z) - A mixed-precision quantum-classical algorithm for solving linear systems [0.0]
We propose a hybrid quantum-classical algorithm that improves the accuracy and reduces the cost of the QSVT.<n>We present an error and complexity analysis, and first experiments using the quantum software stack myQLM.
arXiv Detail & Related papers (2025-02-04T10:49:42Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - OAC: Output-adaptive Calibration for Accurate Post-training Quantization [30.115888331426515]
Post-training Quantization (PTQ) techniques have been developed to compress Large Language Models (LLMs)
Most PTQ approaches formulate the quantization error based on a calibrated layer-wise $ell$ loss.
We propose Output-adaptive (OAC) to incorporate the model output in the calibration process.
arXiv Detail & Related papers (2024-05-23T20:01:17Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Mixed-Precision Quantization with Cross-Layer Dependencies [6.338965603383983]
Mixed-precision quantization (MPQ) assigns varied bit-widths to layers to optimize the accuracy-efficiency trade-off.
Existing methods simplify the MPQ problem by assuming that quantization errors at different layers act independently.
We show that this assumption does not reflect the true behavior of quantized deep neural networks.
arXiv Detail & Related papers (2023-07-11T15:56:00Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
We present a novel Lattice Vector Quantization scheme coupled with a spatially Adaptive Companding (LVQAC) mapping.
For any end-to-end CNN image compression models, replacing uniform quantizer by LVQAC achieves better rate-distortion performance without significantly increasing the model complexity.
arXiv Detail & Related papers (2023-03-25T23:34:15Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
We present a hybrid model-based / data-driven approach to encode an intra-prediction residual block.
The first $K$ eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST) for stability.
Using WebP as a baseline image, experimental results show that our hybrid graph transform achieved better energy compaction than default discrete cosine transform (DCT) and better stability than KLT.
arXiv Detail & Related papers (2022-03-02T15:36:44Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
State-of-the-art neural language models represented by Transformers are becoming increasingly complex and expensive for practical applications.
Current low-bit quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of the system to quantization errors.
The optimal local precision settings are automatically learned using two techniques.
Experiments conducted on Penn Treebank (PTB) and a Switchboard corpus trained LF-MMI TDNN system.
arXiv Detail & Related papers (2021-11-29T09:57:00Z) - BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization [32.770842274996774]
Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks.
Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space.
This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity.
arXiv Detail & Related papers (2021-02-20T22:37:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.