Matrix encoding method in variational quantum singular value decomposition
- URL: http://arxiv.org/abs/2504.02838v2
- Date: Mon, 07 Apr 2025 04:37:11 GMT
- Title: Matrix encoding method in variational quantum singular value decomposition
- Authors: Alexander I. Zenchuk, Wentao Qi, Junde Wu,
- Abstract summary: Conditional measurement is involved to avoid small success probability in ancilla measurement.<n>The objective function for the algorithm can be obtained probabilistically via measurement of the state of a one-qubit subsystem.
- Score: 49.494595696663524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the variational quantum singular value decomposition based on encoding the elements of the considered matrix into the state of a quantum system of appropriate dimension. This method doesn't use the expansion of this matrix in terms of the unitary matrices. Conditional measurement is involved to avoid small success probability in ancilla measurement. The objective function for maximization algorithm can be obtained probabilistically via measurement of the state of a one-qubit subsystem. The circuit requires $O(\log N)$ qubits for realization of this algorithm whose depths is $O(\log N)$ as well.
Related papers
- Quantum Hermitian conjugate and encoding unnormalized matrices [49.494595696663524]
We develop the family of matrix-manipulation algorithms based on the encoding the matrix elements into the probability amplitudes of the pure superposition state of a certain quantum system.<n>We introduce two extensions to these algorithms which allow (i) to perform Hermitian conjugation of matrices under consideration and (ii) to weaken the restriction to the absolute values of matrix elements unavoidably imposed by the normalization condition for a pure quantum state.
arXiv Detail & Related papers (2025-03-27T08:49:59Z) - A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - Purely quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems [43.53835128052666]
We propose quantum algorithms for the computation of the determinant and inverse of an $(N-1) times (N-1)$ matrix.<n>This approach is a straightforward modification of the existing algorithm for determining the determinant of an $N times N$ matrix.<n>We provide suitable circuit designs for all three algorithms, each estimated to require $O(N log N)$ in terms of space.
arXiv Detail & Related papers (2024-01-29T23:23:27Z) - A square-root speedup for finding the smallest eigenvalue [0.6597195879147555]
We describe a quantum algorithm for finding the smallest eigenvalue of a Hermitian matrix.
This algorithm combines Quantum Phase Estimation and Quantum Amplitude Estimation to achieve a quadratic speedup.
We also provide a similar algorithm with the same runtime that allows us to prepare a quantum state lying mostly in the matrix's low-energy subspace.
arXiv Detail & Related papers (2023-11-07T22:52:56Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.