Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications
- URL: http://arxiv.org/abs/2504.02867v1
- Date: Tue, 01 Apr 2025 09:36:56 GMT
- Title: Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications
- Authors: Hongliu Cao, Ilias Driouich, Robin Singh, Eoin Thomas,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations.<n>Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation.<n>We propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations. This underscores the need for robust evaluation methodologies to accurately assess LLM-based applications. Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation. Recent research has explored leveraging LLMs to mimic human reasoning and decision-making processes for evaluation purposes known as LLM-as-a-judge framework. However, these existing frameworks have two significant limitations. First, they lack the flexibility to adapt to different text styles, including various answer and ground truth styles, thereby reducing their generalization performance. Second, the evaluation scores produced by these frameworks are often skewed and hard to interpret, showing a low correlation with human judgment. To address these challenges, we propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications. This system iteratively refines evaluation prompts and balances the trade-off between the adaptive requirements of downstream tasks and the alignment with human perception. Our experimental results show that the proposed multi-agent LLM Judge framework not only enhances evaluation accuracy compared to existing methods but also produces evaluation scores that better align with human perception.
Related papers
- Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
Large Language Models (LLMs) are increasingly being explored as evaluators in serious games.
This study investigates the reliability of five small-scale LLMs when assessing player responses in textitEn-join, a game that simulates decision-making within energy communities.
Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance.
arXiv Detail & Related papers (2025-04-13T10:46:13Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.<n>Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.<n>We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - Evaluating the Performance of Large Language Models via Debates [43.40134389150456]
Large Language Models (LLMs) are rapidly evolving and impacting various fields.<n>Most current approaches for performance evaluation are either based on fixed, domain-specific questions, or rely on human input.<n>We propose an automated benchmarking framework based on debates between LLMs, judged by another LLM.<n>This method assesses not only domain knowledge, but also skills such as argumentative reasoning and inconsistency recognition.
arXiv Detail & Related papers (2024-06-16T19:02:31Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition [46.949604465227054]
We propose a sample-efficient human evaluation method based on MAximum Discrepancy (MAD) competition.
MAD automatically selects a small set of informative and diverse instructions, each adapted to two LLMs.
The pairwise comparison results are then aggregated into a global ranking using the Elo rating system.
arXiv Detail & Related papers (2024-04-10T01:26:24Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.<n>This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)<n>We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
This study investigates the behavior of crowd-sourced and expert annotators, as well as large language models (LLMs)
Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors.
We propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score.
arXiv Detail & Related papers (2023-07-06T14:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.