Better Bill GPT: Comparing Large Language Models against Legal Invoice Reviewers
- URL: http://arxiv.org/abs/2504.02881v1
- Date: Wed, 02 Apr 2025 05:07:08 GMT
- Title: Better Bill GPT: Comparing Large Language Models against Legal Invoice Reviewers
- Authors: Nick Whitehouse, Nicole Lincoln, Stephanie Yiu, Lizzie Catterson, Rivindu Perera,
- Abstract summary: This study presents the first empirical comparison of Large Language Models (LLMs) against human invoice reviewers.<n>LLMs achieve up to 92% accuracy, surpassing the 72% ceiling set by experienced lawyers.<n>Speed comparisons are even more striking - while lawyers take 194 to 316 seconds per invoice, LLMs are capable of completing reviews in as fast as 3.6 seconds.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal invoice review is a costly, inconsistent, and time-consuming process, traditionally performed by Legal Operations, Lawyers or Billing Specialists who scrutinise billing compliance line by line. This study presents the first empirical comparison of Large Language Models (LLMs) against human invoice reviewers - Early-Career Lawyers, Experienced Lawyers, and Legal Operations Professionals-assessing their accuracy, speed, and cost-effectiveness. Benchmarking state-of-the-art LLMs against a ground truth set by expert legal professionals, our empirically substantiated findings reveal that LLMs decisively outperform humans across every metric. In invoice approval decisions, LLMs achieve up to 92% accuracy, surpassing the 72% ceiling set by experienced lawyers. On a granular level, LLMs dominate line-item classification, with top models reaching F-scores of 81%, compared to just 43% for the best-performing human group. Speed comparisons are even more striking - while lawyers take 194 to 316 seconds per invoice, LLMs are capable of completing reviews in as fast as 3.6 seconds. And cost? AI slashes review expenses by 99.97%, reducing invoice processing costs from an average of $4.27 per invoice for human invoice reviewers to mere cents. These results highlight the evolving role of AI in legal spend management. As law firms and corporate legal departments struggle with inefficiencies, this study signals a seismic shift: The era of LLM-powered legal spend management is not on the horizon, it has arrived. The challenge ahead is not whether AI can perform as well as human reviewers, but how legal teams will strategically incorporate it, balancing automation with human discretion.
Related papers
- JudgeLRM: Large Reasoning Models as a Judge [65.14085339820795]
We investigate whether Large Language Models (LLMs) judges truly benefit from enhanced reasoning capabilities.
We introduce JudgeLRM, a family of judgment-oriented LLMs trained using reinforcement learning (RL) with judge-wise, outcome-driven rewards.
arXiv Detail & Related papers (2025-03-31T02:18:51Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.<n>The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.<n>We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - Auto-Arena: Automating LLM Evaluations with Agent Peer Battles and Committee Discussions [77.66677127535222]
Auto-Arena is an innovative framework that automates the entire evaluation process using LLM-powered agents.
In our experiments, Auto-Arena shows a 92.14% correlation with human preferences, surpassing all previous expert-annotated benchmarks.
arXiv Detail & Related papers (2024-05-30T17:19:19Z) - A View of How Language Models Will Transform Law [0.0]
Large increases in productivity and attendant cost savings could encourage law firms and corporate legal departments to develop large language models in-house.
A ten percent increase in attorney productivity would encourage an average sized 'Big Law' firm to reduce its associate headcount by 300 to 400 lawyers.
arXiv Detail & Related papers (2024-05-13T15:10:00Z) - Better Call GPT, Comparing Large Language Models Against Lawyers [0.0]
This paper dissects whether Large Language Models can outperform humans in accuracy, speed, and cost efficiency during contract review.
In speed, LLMs complete reviews in mere seconds, eclipsing the hours required by their human counterparts.
Cost wise, LLMs operate at a fraction of the price, offering a staggering 99.97 percent reduction in cost over traditional methods.
arXiv Detail & Related papers (2024-01-24T03:53:28Z) - BLT: Can Large Language Models Handle Basic Legal Text? [44.89873147675516]
GPT-4 and Claude perform poorly on basic legal text handling.
Poor performance on benchmark casts into doubt their reliability as-is for legal practice.
Fine-tuning on training set brings even a small model to near-perfect performance.
arXiv Detail & Related papers (2023-11-16T09:09:22Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Large Language Models in Cryptocurrency Securities Cases: Can a GPT
Model Meaningfully Assist Lawyers? [0.3441021278275805]
We study GPT-3.5's legal reasoning and ChatGPT's legal drafting capabilities.
We feed fact patterns from real-life cases to GPT-3.5 and evaluate its ability to determine correct potential violations.
Second, we had mock jurors assess complaints written by ChatGPT and lawyers.
arXiv Detail & Related papers (2023-08-11T09:23:11Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z) - Legal Prompt Engineering for Multilingual Legal Judgement Prediction [2.539568419434224]
Legal Prompt Engineering (LPE) or Legal Prompting is a process to guide and assist a large language model (LLM) with performing a natural legal language processing skill.
We investigate the performance of zero-shot LPE for given facts in case-texts from the European Court of Human Rights (in English) and the Federal Supreme Court of Switzerland (in German, French and Italian)
arXiv Detail & Related papers (2022-12-05T12:17:02Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.