Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
- URL: http://arxiv.org/abs/2504.02957v2
- Date: Tue, 08 Apr 2025 19:37:59 GMT
- Title: Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
- Authors: Sijia Zhou, Yunwen Lei, Ata Kabán,
- Abstract summary: We study optimization with data-adaptive sampling schemes to train pairwise learning models.<n>A notable difference of pairwise learning from pointwise learning is the statistical ascent among input pairs.
- Score: 32.8453673919231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study stochastic optimization with data-adaptive sampling schemes to train pairwise learning models. Pairwise learning is ubiquitous, and it covers several popular learning tasks such as ranking, metric learning and AUC maximization. A notable difference of pairwise learning from pointwise learning is the statistical dependencies among input pairs, for which existing analyses have not been able to handle in the general setting considered in this paper. To this end, we extend recent results that blend together two algorithm-dependent frameworks of analysis -- algorithmic stability and PAC-Bayes -- which allow us to deal with any data-adaptive sampling scheme in the optimizer. We instantiate this framework to analyze (1) pairwise stochastic gradient descent, which is a default workhorse in many machine learning problems, and (2) pairwise stochastic gradient descent ascent, which is a method used in adversarial training. All of these algorithms make use of a stochastic sampling from a discrete distribution (sample indices) before each update. Non-uniform sampling of these indices has been already suggested in the recent literature, to which our work provides generalization guarantees in both smooth and non-smooth convex problems.
Related papers
- Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Pairwise Learning via Stagewise Training in Proximal Setting [0.0]
We combine adaptive sample size and importance sampling techniques for pairwise learning, with convergence guarantees for nonsmooth convex pairwise loss functions.
We demonstrate that sampling opposite instances at each reduces the variance of the gradient, hence accelerating convergence.
arXiv Detail & Related papers (2022-08-08T11:51:01Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Minibatch and Momentum Model-based Methods for Stochastic Non-smooth
Non-convex Optimization [3.4809730725241597]
We make two important extensions to model-based methods.
First, we propose a new minibatch which takes a set of samples to approximate the model function in each iteration.
Second, by the success of momentum techniques we propose a new convex-based model.
arXiv Detail & Related papers (2021-06-06T05:31:57Z) - Effective Proximal Methods for Non-convex Non-smooth Regularized
Learning [27.775096437736973]
We show that the independent sampling scheme tends to improve performance of the commonly-used uniform sampling scheme.
Our new analysis also derives a speed for the sampling than best one available so far.
arXiv Detail & Related papers (2020-09-14T16:41:32Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Robust Learning Rate Selection for Stochastic Optimization via Splitting
Diagnostic [5.395127324484869]
SplitSGD is a new dynamic learning schedule for optimization.
The method decreases the learning rate for better adaptation to the local geometry of the objective function.
It essentially does not incur additional computational cost than standard SGD.
arXiv Detail & Related papers (2019-10-18T19:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.